Unverified Commit 94e73f0b authored by TechxGenus's avatar TechxGenus Committed by GitHub
Browse files

Add Gemma Support (#393)

parent d8ca1e2f
......@@ -14,3 +14,4 @@ from .baichuan import BaichuanAWQForCausalLM
from .llava import LlavaAWQForCausalLM
from .mixtral import MixtralAWQForCausalLM
from .qwen2 import Qwen2AWQForCausalLM
from .gemma import GemmaAWQForCausalLM
......@@ -23,6 +23,7 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"baichuan": BaichuanAWQForCausalLM,
"llava": LlavaAWQForCausalLM,
"qwen2": Qwen2AWQForCausalLM,
"gemma": GemmaAWQForCausalLM,
}
......
......@@ -67,6 +67,7 @@ TRANSFORMERS_AUTO_MAPPING_DICT = {
"baichuan": "AutoModelForCausalLM",
"llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM",
"gemma": "AutoModelForCausalLM",
}
......
import tqdm
import torch
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.gemma.modeling_gemma import (
GemmaDecoderLayer as OldGemmaDecoderLayer,
GemmaForCausalLM as OldGemmaForCausalLM,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm
class GemmaAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GemmaDecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def fuse_layers(model: OldGemmaDecoderLayer):
fuser = GemmaFuser(model)
fuser.fuse_transformer()
@staticmethod
def get_model_layers(model: OldGemmaForCausalLM):
return model.model.layers
@staticmethod
def get_act_for_scaling(module: OldGemmaDecoderLayer):
return dict(is_scalable=False)
@staticmethod
def move_embed(model: OldGemmaForCausalLM, device: str):
model.model.embed_tokens = model.model.embed_tokens.to(device)
@staticmethod
def get_layers_for_scaling(module: OldGemmaDecoderLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(
dict(
prev_op=module.input_layernorm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
],
inp=input_feat["self_attn.q_proj"],
module2inspect=module.self_attn,
kwargs=module_kwargs,
)
)
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(
dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat["self_attn.o_proj"],
)
)
# linear 1
layers.append(
dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat["mlp.gate_proj"],
module2inspect=module.mlp,
)
)
# linear 2
layers.append(
dict(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat["mlp.down_proj"],
)
)
return layers
class GemmaFuser:
def __init__(self, model: OldGemmaForCausalLM):
self.model = model
self.Gemma_blocks: List[Tuple[str, OldGemmaDecoderLayer]] = [
(name, module)
for name, module in self.model.named_modules()
if "GemmaDecoderLayer".lower() in module.__class__.__name__.lower()
]
def fuse_transformer(self):
blocks = []
module: OldGemmaDecoderLayer
for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
device = next(iter(module.state_dict().values())).device
qkv = fuse_qkv(
module,
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
)
with torch.no_grad():
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
module.input_layernorm.weight += 1
module.post_attention_layernorm.weight += 1
norm_1 = FasterTransformerRMSNorm(
module.input_layernorm.weight, module.input_layernorm.eps
)
norm_2 = FasterTransformerRMSNorm(
module.post_attention_layernorm.weight,
module.post_attention_layernorm.eps,
)
blocks.append(
LlamaLikeBlock(
hidden_size=self.model.config.hidden_size,
n_heads=self.model.config.num_attention_heads,
n_kv_heads=self.model.config.num_key_value_heads,
qkv_layer=qkv,
o_proj=module.self_attn.o_proj,
mlp=module.mlp,
norm_1=norm_1,
norm_2=norm_2,
dev=device,
max_seq_len=self.model.config.max_seq_len,
rope_theta=self.model.config.rope_theta,
head_dim=self.model.config.head_dim,
)
)
with torch.no_grad():
# Normalize Gemma's embedding layer
self.model.model.embed_tokens.weight *= self.model.config.hidden_size**0.5
self.model.model = LlamaLikeModel(
self.model.config.vocab_size,
blocks,
self.model.model.embed_tokens,
self.model.model.norm,
)
setattr(self.model.model, "blocks", self.model.model.blocks)
......@@ -25,12 +25,12 @@ if HF_NEW_CACHE_FORMAT:
class RoPE(nn.Module):
def __init__(self, hidden_size, n_heads, max_seq_len, device, rope_theta):
def __init__(self, head_dim, max_seq_len, device, rope_theta):
super(RoPE, self).__init__()
self.freqs_cis = nn.Parameter(
self.precompute_freqs_cis(
hidden_size // n_heads, max_seq_len * 2, rope_theta
head_dim, max_seq_len * 2, rope_theta
).to(device),
requires_grad=False,
)
......@@ -118,6 +118,7 @@ class QuantAttentionFused(nn.Module):
use_alibi=False,
attention_shapes=None,
rope_theta=10000,
head_dim=None,
**kwargs
):
super().__init__()
......@@ -125,7 +126,11 @@ class QuantAttentionFused(nn.Module):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
self.head_dim = self.hidden_size // n_heads
self.head_dim = head_dim
if head_dim is None:
self.head_dim = hidden_size // n_heads
self.qkv_proj = qkv_layer
self.o_proj = o_proj
self.start_pos = 0
......@@ -162,7 +167,7 @@ class QuantAttentionFused(nn.Module):
self.is_neox = False
else:
self.alibi = None
self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev, rope_theta)
self.rope = RoPE(self.head_dim, max_seq_len, dev, rope_theta)
self.rotary_dim = self.head_dim
self.is_neox = True
......
......@@ -80,10 +80,17 @@ class LlamaLikeBlock(nn.Module):
max_seq_len,
rope_theta=10000,
use_alibi=False,
head_dim=None,
):
super().__init__()
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.head_dim = hidden_size // n_heads
# To support gemma-7b, its head_dim is separate
if head_dim:
self.head_dim = head_dim
self.hidden_size = hidden_size
self.norm_1 = norm_1.to(dev)
self.attn = QuantAttentionFused(
......@@ -96,6 +103,7 @@ class LlamaLikeBlock(nn.Module):
max_seq_len=max_seq_len,
use_alibi=use_alibi,
rope_theta=rope_theta,
head_dim=head_dim,
).to(dev)
self.norm_2 = norm_2.to(dev)
self.mlp = mlp.to(dev)
......
......@@ -116,14 +116,14 @@ class LlamaLikeModel(nn.Module):
h,
mask,
)
h, _, past_key_value = layer(
h, _, _ = layer(
h, None, attention_mask=mask, is_causal=is_causal
)
h = self.norm(h)
return BaseModelOutputWithPast(
last_hidden_state=h,
past_key_values=past_key_value,
past_key_values=None,
hidden_states=(),
attentions=(),
)
......
......@@ -6,9 +6,10 @@ from awq.modules.act import ScaledActivation
from awq.utils.module import get_op_by_name, set_op_by_name
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.models.gemma.modeling_gemma import GemmaRMSNorm
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation
allowed_norms = [nn.LayerNorm, LlamaRMSNorm]
allowed_norms = [nn.LayerNorm, LlamaRMSNorm, GemmaRMSNorm]
allowed_act_fns = [
nn.GELU,
BloomGelu,
......@@ -88,7 +89,15 @@ def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):
scales = scales.to(ln.weight.device)
ln.weight.div_(scales)
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
if isinstance(ln, GemmaRMSNorm):
ln.weight += 1
ln.weight.div_(scales)
ln.weight -= 1
else:
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment