gemma.py 5.08 KB
Newer Older
TechxGenus's avatar
TechxGenus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tqdm
import torch
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.gemma.modeling_gemma import (
    GemmaDecoderLayer as OldGemmaDecoderLayer,
    GemmaForCausalLM as OldGemmaForCausalLM,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm


class GemmaAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "GemmaDecoderLayer"
    max_new_tokens_key = "max_position_embeddings"

    @staticmethod
    def fuse_layers(model: OldGemmaDecoderLayer):
        fuser = GemmaFuser(model)
        fuser.fuse_transformer()

    @staticmethod
    def get_model_layers(model: OldGemmaForCausalLM):
        return model.model.layers

    @staticmethod
    def get_act_for_scaling(module: OldGemmaDecoderLayer):
        return dict(is_scalable=False)

    @staticmethod
    def move_embed(model: OldGemmaForCausalLM, device: str):
        model.model.embed_tokens = model.model.embed_tokens.to(device)

    @staticmethod
    def get_layers_for_scaling(module: OldGemmaDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(
            dict(
                prev_op=module.input_layernorm,
                layers=[
                    module.self_attn.q_proj,
                    module.self_attn.k_proj,
                    module.self_attn.v_proj,
                ],
                inp=input_feat["self_attn.q_proj"],
                module2inspect=module.self_attn,
                kwargs=module_kwargs,
            )
        )

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(
                dict(
                    prev_op=module.self_attn.v_proj,
                    layers=[module.self_attn.o_proj],
                    inp=input_feat["self_attn.o_proj"],
                )
            )

        # linear 1
        layers.append(
            dict(
                prev_op=module.post_attention_layernorm,
                layers=[module.mlp.gate_proj, module.mlp.up_proj],
                inp=input_feat["mlp.gate_proj"],
                module2inspect=module.mlp,
            )
        )

        # linear 2
        layers.append(
            dict(
                prev_op=module.mlp.up_proj,
                layers=[module.mlp.down_proj],
                inp=input_feat["mlp.down_proj"],
            )
        )

        return layers


class GemmaFuser:
    def __init__(self, model: OldGemmaForCausalLM):
        self.model = model

        self.Gemma_blocks: List[Tuple[str, OldGemmaDecoderLayer]] = [
            (name, module)
            for name, module in self.model.named_modules()
            if "GemmaDecoderLayer".lower() in module.__class__.__name__.lower()
        ]

    def fuse_transformer(self):
        blocks = []

        module: OldGemmaDecoderLayer
        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
                module.self_attn.v_proj,
            )
            with torch.no_grad():
                # GemmaRMSNorm is different from Llama's in that it multiplies
                # (1 + weight) to the output, instead of just weight.
                module.input_layernorm.weight += 1
                module.post_attention_layernorm.weight += 1
            norm_1 = FasterTransformerRMSNorm(
                module.input_layernorm.weight, module.input_layernorm.eps
            )
            norm_2 = FasterTransformerRMSNorm(
                module.post_attention_layernorm.weight,
                module.post_attention_layernorm.eps,
            )
            blocks.append(
                LlamaLikeBlock(
                    hidden_size=self.model.config.hidden_size,
                    n_heads=self.model.config.num_attention_heads,
                    n_kv_heads=self.model.config.num_key_value_heads,
                    qkv_layer=qkv,
                    o_proj=module.self_attn.o_proj,
                    mlp=module.mlp,
                    norm_1=norm_1,
                    norm_2=norm_2,
                    dev=device,
                    max_seq_len=self.model.config.max_seq_len,
                    rope_theta=self.model.config.rope_theta,
                    head_dim=self.model.config.head_dim,
                )
            )
        
        with torch.no_grad():
            # Normalize Gemma's embedding layer
            self.model.model.embed_tokens.weight *= self.model.config.hidden_size**0.5
        
        self.model.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )
        setattr(self.model.model, "blocks", self.model.model.blocks)