import tqdm import torch from typing import List, Tuple from .base import BaseAWQForCausalLM from awq.utils.fused_utils import fuse_qkv from awq.modules.fused.block import LlamaLikeBlock from awq.modules.fused.model import LlamaLikeModel from transformers.models.gemma.modeling_gemma import ( GemmaDecoderLayer as OldGemmaDecoderLayer, GemmaForCausalLM as OldGemmaForCausalLM, ) from awq.modules.fused.norm import FasterTransformerRMSNorm class GemmaAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GemmaDecoderLayer" max_new_tokens_key = "max_position_embeddings" @staticmethod def fuse_layers(model: OldGemmaDecoderLayer): fuser = GemmaFuser(model) fuser.fuse_transformer() @staticmethod def get_model_layers(model: OldGemmaForCausalLM): return model.model.layers @staticmethod def get_act_for_scaling(module: OldGemmaDecoderLayer): return dict(is_scalable=False) @staticmethod def move_embed(model: OldGemmaForCausalLM, device: str): model.model.embed_tokens = model.model.embed_tokens.to(device) @staticmethod def get_layers_for_scaling(module: OldGemmaDecoderLayer, input_feat, module_kwargs): layers = [] # attention input layers.append( dict( prev_op=module.input_layernorm, layers=[ module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj, ], inp=input_feat["self_attn.q_proj"], module2inspect=module.self_attn, kwargs=module_kwargs, ) ) # attention out # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696 if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape: layers.append( dict( prev_op=module.self_attn.v_proj, layers=[module.self_attn.o_proj], inp=input_feat["self_attn.o_proj"], ) ) # linear 1 layers.append( dict( prev_op=module.post_attention_layernorm, layers=[module.mlp.gate_proj, module.mlp.up_proj], inp=input_feat["mlp.gate_proj"], module2inspect=module.mlp, ) ) # linear 2 layers.append( dict( prev_op=module.mlp.up_proj, layers=[module.mlp.down_proj], inp=input_feat["mlp.down_proj"], ) ) return layers class GemmaFuser: def __init__(self, model: OldGemmaForCausalLM): self.model = model self.Gemma_blocks: List[Tuple[str, OldGemmaDecoderLayer]] = [ (name, module) for name, module in self.model.named_modules() if "GemmaDecoderLayer".lower() in module.__class__.__name__.lower() ] def fuse_transformer(self): blocks = [] module: OldGemmaDecoderLayer for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."): device = next(iter(module.state_dict().values())).device qkv = fuse_qkv( module, module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj, ) with torch.no_grad(): # GemmaRMSNorm is different from Llama's in that it multiplies # (1 + weight) to the output, instead of just weight. module.input_layernorm.weight += 1 module.post_attention_layernorm.weight += 1 norm_1 = FasterTransformerRMSNorm( module.input_layernorm.weight, module.input_layernorm.eps ) norm_2 = FasterTransformerRMSNorm( module.post_attention_layernorm.weight, module.post_attention_layernorm.eps, ) blocks.append( LlamaLikeBlock( hidden_size=self.model.config.hidden_size, n_heads=self.model.config.num_attention_heads, n_kv_heads=self.model.config.num_key_value_heads, qkv_layer=qkv, o_proj=module.self_attn.o_proj, mlp=module.mlp, norm_1=norm_1, norm_2=norm_2, dev=device, max_seq_len=self.model.config.max_seq_len, rope_theta=self.model.config.rope_theta, head_dim=self.model.config.head_dim, ) ) with torch.no_grad(): # Normalize Gemma's embedding layer self.model.model.embed_tokens.weight *= self.model.config.hidden_size**0.5 self.model.model = LlamaLikeModel( self.model.config.vocab_size, blocks, self.model.model.embed_tokens, self.model.model.norm, ) setattr(self.model.model, "blocks", self.model.model.blocks)