gemm.py 6.31 KB
Newer Older
1
2
3
4
5
6
import torch
import torch.nn as nn
from awq.utils.utils import get_best_device
from awq.utils.packing_utils import dequantize_gemm

try:
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
7
8
    import awq_ext  # with CUDA kernels (AutoAWQ_kernels)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False


class WQLinear_GEMM(nn.Module):
    def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
        super().__init__()

        if w_bit not in [4]:
            raise NotImplementedError("Only 4-bit are supported for now.")

        self.in_features = in_features
        self.out_features = out_features
        self.w_bit = w_bit
        self.group_size = group_size if group_size != -1 else in_features

        # quick sanity check (make sure aligment)
        assert self.in_features % self.group_size == 0
        assert out_features % (32 // self.w_bit) == 0

        self.register_buffer(
            "qweight",
            torch.zeros(
                (in_features, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (in_features // self.group_size, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "scales",
            torch.zeros(
                (in_features // self.group_size, out_features),
                dtype=torch.float16,
                device=dev,
            ),
        )
        if bias:
            self.register_buffer(
                "bias",
                torch.zeros(
                    (out_features),
                    dtype=torch.float16,
                    device=dev,
                ),
            )
        else:
            self.bias = None

    @classmethod
    def from_linear(
        cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
    ):
        awq_linear = cls(
            w_bit,
            group_size,
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            linear.weight.device,
        )
        if init_only:  # just prepare for loading sd
            return awq_linear

        # need scales and zeros info for real quantization
        assert scales is not None and zeros is not None
        scale_zeros = zeros * scales

        awq_linear.scales = scales.clone().half()
        if linear.bias is not None:
            awq_linear.bias = linear.bias.clone().half()

        pack_num = 32 // awq_linear.w_bit

        intweight = []
        for idx in range(awq_linear.in_features):
            intweight.append(
                torch.round(
                    (linear.weight.data[:, idx] + scale_zeros[idx // group_size])
                    / awq_linear.scales[idx // group_size]
                ).to(torch.int)[:, None]
            )
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.t().contiguous()
        intweight = intweight.to(dtype=torch.int32)

        best_device = get_best_device()

        # Avoid: The operator 'aten::__lshift__.Scalar' is not currently implemented for the MPS device
        if "mps" in best_device:
            intweight = intweight.to("cpu")

        qweight = torch.zeros(
            (intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=intweight.device,
        )

        for col in range(intweight.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qweight_col = intweight[:, col * pack_num + order_map[i]]
                qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
        awq_linear.qweight = qweight

        zeros = zeros.to(dtype=torch.int32, device=best_device)

        if "mps" in best_device:
            zeros = zeros.to("cpu")
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        qzeros = torch.zeros(
            (zeros.shape[0], zeros.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=zeros.device,
        )

        for col in range(zeros.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qzero_col = zeros[:, col * pack_num + order_map[i]]
                qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
        awq_linear.qzeros = qzeros

        return awq_linear

    @torch.no_grad()
    def forward(self, x):
        out_shape = x.shape[:-1] + (self.out_features,)

        input_dtype = x.dtype
        if input_dtype != torch.float16:
            x = x.half()

        if AWQ_INSTALLED:
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
157
            FP16_MATMUL_HEURISTIC_CONDITION = x.shape[0] * x.shape[1] >= 1024
158
159
160
161
162
163
164
165
166

            if FP16_MATMUL_HEURISTIC_CONDITION:
                out = awq_ext.dequantize_weights_cuda(
                    self.qweight,
                    self.scales,
                    self.qzeros,
                    0,
                    0,
                    0,
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
167
                    False,
168
169
170
171
                )
                out = torch.matmul(x, out)
            else:
                out = awq_ext.gemm_forward_cuda(
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
172
173
174
175
176
                    x.reshape(-1, x.shape[-1]),
                    self.qweight,
                    self.scales,
                    self.qzeros,
                    8,
177
                )
178
179
180
181
182
183
        else:
            out = dequantize_gemm(
                self.qweight,
                self.qzeros,
                self.scales,
                self.w_bit,
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
184
                self.group_size,
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            )
            out = torch.matmul(x, out)

        if input_dtype != torch.float16:
            out = out.to(dtype=input_dtype)

        out = out + self.bias if self.bias is not None else out
        return out.reshape(out_shape)

    def extra_repr(self) -> str:
        return (
            "in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
                self.in_features,
                self.out_features,
                self.bias is not None,
                self.w_bit,
                self.group_size,
            )
        )