gemm.py 5.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
from awq.utils.utils import get_best_device
from awq.utils.packing_utils import dequantize_gemm

try:
    import awq_ext  # with CUDA kernels
    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False


class WQLinear_GEMM(nn.Module):
    def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
        super().__init__()

        if w_bit not in [4]:
            raise NotImplementedError("Only 4-bit are supported for now.")

        self.in_features = in_features
        self.out_features = out_features
        self.w_bit = w_bit
        self.group_size = group_size if group_size != -1 else in_features

        # quick sanity check (make sure aligment)
        assert self.in_features % self.group_size == 0
        assert out_features % (32 // self.w_bit) == 0

        self.register_buffer(
            "qweight",
            torch.zeros(
                (in_features, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (in_features // self.group_size, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "scales",
            torch.zeros(
                (in_features // self.group_size, out_features),
                dtype=torch.float16,
                device=dev,
            ),
        )
        if bias:
            self.register_buffer(
                "bias",
                torch.zeros(
                    (out_features),
                    dtype=torch.float16,
                    device=dev,
                ),
            )
        else:
            self.bias = None

    @classmethod
    def from_linear(
        cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
    ):
        awq_linear = cls(
            w_bit,
            group_size,
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            linear.weight.device,
        )
        if init_only:  # just prepare for loading sd
            return awq_linear

        # need scales and zeros info for real quantization
        assert scales is not None and zeros is not None
        scale_zeros = zeros * scales

        awq_linear.scales = scales.clone().half()
        if linear.bias is not None:
            awq_linear.bias = linear.bias.clone().half()

        pack_num = 32 // awq_linear.w_bit

        intweight = []
        for idx in range(awq_linear.in_features):
            intweight.append(
                torch.round(
                    (linear.weight.data[:, idx] + scale_zeros[idx // group_size])
                    / awq_linear.scales[idx // group_size]
                ).to(torch.int)[:, None]
            )
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.t().contiguous()
        intweight = intweight.to(dtype=torch.int32)

        best_device = get_best_device()

        # Avoid: The operator 'aten::__lshift__.Scalar' is not currently implemented for the MPS device
        if "mps" in best_device:
            intweight = intweight.to("cpu")

        qweight = torch.zeros(
            (intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=intweight.device,
        )

        for col in range(intweight.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qweight_col = intweight[:, col * pack_num + order_map[i]]
                qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
        awq_linear.qweight = qweight

        zeros = zeros.to(dtype=torch.int32, device=best_device)

        if "mps" in best_device:
            zeros = zeros.to("cpu")
        
        qzeros = torch.zeros(
            (zeros.shape[0], zeros.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=zeros.device,
        )

        for col in range(zeros.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qzero_col = zeros[:, col * pack_num + order_map[i]]
                qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
        awq_linear.qzeros = qzeros

        return awq_linear

    @torch.no_grad()
    def forward(self, x):
        out_shape = x.shape[:-1] + (self.out_features,)

        input_dtype = x.dtype
        if input_dtype != torch.float16:
            x = x.half()

        if AWQ_INSTALLED:
            out = awq_ext.gemm_forward_cuda(
                x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, 8
            )
        else:
            out = dequantize_gemm(
                self.qweight,
                self.qzeros,
                self.scales,
                self.w_bit,
                self.group_size
            )
            out = torch.matmul(x, out)

        if input_dtype != torch.float16:
            out = out.to(dtype=input_dtype)

        out = out + self.bias if self.bias is not None else out
        return out.reshape(out_shape)

    def extra_repr(self) -> str:
        return (
            "in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
                self.in_features,
                self.out_features,
                self.bias is not None,
                self.w_bit,
                self.group_size,
            )
        )