scale.py 4.71 KB
Newer Older
Casper's avatar
Casper committed
1
2
import torch
import torch.nn as nn
Vik Paruchuri's avatar
Vik Paruchuri committed
3
from typing import Tuple, List
4
from awq.utils.utils import get_best_device
Casper's avatar
Casper committed
5
from awq.modules.act import ScaledActivation
Casper Hansen's avatar
Casper Hansen committed
6
from awq.utils.module import get_op_by_name, set_op_by_name
Casper's avatar
Casper committed
7
8
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
twaka's avatar
twaka committed
9
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation
Casper's avatar
Casper committed
10
11

allowed_norms = [nn.LayerNorm, LlamaRMSNorm]
twaka's avatar
twaka committed
12
allowed_act_fns = [nn.GELU, BloomGelu, NewGELUActivation, PytorchGELUTanh, GELUActivation]
Casper's avatar
Casper committed
13
14
15
16
17

@torch.no_grad()
def apply_clip(module, clip_list: Tuple[str, torch.Tensor]):
    for name, max_val in clip_list:
        layer: nn.Linear = get_op_by_name(module, name)
18
        layer.to(get_best_device())
Casper's avatar
Casper committed
19
20
21
22
23
24
25
26
27
28
29
30
        max_val = max_val.to(layer.weight.device)
        org_shape = layer.weight.shape
        layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
        layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
        layer.weight.data = layer.weight.data.reshape(org_shape)
        layer.cpu()


def apply_scale(module, scales_list, input_feat_dict=None):
    for prev_op_name, layer_names, scales in scales_list:
        prev_op = get_op_by_name(module, prev_op_name)
        layers = [get_op_by_name(module, name) for name in layer_names]
31
32
33
        
        best_device = get_best_device()
        prev_op.to(best_device)
Casper's avatar
Casper committed
34
        for layer in layers:
35
36
            layer.to(best_device)
        scales.to(best_device)
Casper's avatar
Casper committed
37
        
38
39
40
41
        if isinstance(prev_op, nn.Linear) and type(layers) == list and isinstance(layers[0], nn.Linear):
            scale_fc_fcs(prev_op, layers, scales)

        elif isinstance(prev_op, nn.Linear):
Casper's avatar
Casper committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
            assert len(layers) == 1
            scale_fc_fc(prev_op, layers[0], scales)

        elif any(isinstance(prev_op,t) for t in allowed_norms) \
             or 'rmsnorm' in str(prev_op.__class__).lower():
            scale_ln_fcs(prev_op, layers, scales)

        elif any(isinstance(prev_op,t) for t in allowed_act_fns):
            new_module = ScaledActivation(prev_op, scales)
            set_op_by_name(module, prev_op_name, new_module)
            scale_gelu_fc(prev_op, layers[0], scales)
            
        else:
            raise NotImplementedError(
                f"prev_op {type(prev_op)} not supported yet!")
            
        # apply the scaling to input feat if given; prepare it for clipping
        if input_feat_dict is not None:  
            for layer_name in layer_names:
61
62
63
64
                # Skip the modules that are not quantized
                if layer_name in input_feat_dict:
                    inp = input_feat_dict[layer_name]
                    inp.div_(scales.view(1, -1).to(inp.device))
Casper's avatar
Casper committed
65
66
67
68
69
70
71

        prev_op.cpu()
        for layer in layers:
            layer.cpu()
        scales.cpu()

@torch.no_grad()
Vik Paruchuri's avatar
Vik Paruchuri committed
72
def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):
Casper's avatar
Casper committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    if not isinstance(fcs, list):
        fcs = [fcs]
    
    scales = scales.to(ln.weight.device)

    ln.weight.div_(scales)
    if hasattr(ln, 'bias') and ln.bias is not None:
        ln.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in ln.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0

@torch.no_grad()
Casper's avatar
Casper committed
92
def scale_fc_fc(fc1: nn.Linear, fc2: nn.Linear, scales: torch.Tensor):
Casper's avatar
Casper committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    assert isinstance(fc1, nn.Linear)
    assert isinstance(fc2, nn.Linear)
    
    scales = scales.to(fc1.weight.device)

    fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
    if fc1.bias is not None:
        fc1.bias.div_(scales.view(-1))

    fc2.weight.mul_(scales.view(1, -1))

    for p in fc1.parameters():
        assert torch.isnan(p).sum() == 0
    for p in fc2.parameters():
        assert torch.isnan(p).sum() == 0

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
@torch.no_grad()
def scale_fc_fcs(fc1: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):
    if not isinstance(fcs, list):
        fcs = [fcs]
    
    scales = scales.to(fc1.weight.device)

    fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
    if fc1.bias is not None:
        fc1.bias.div_(scales.view(-1))

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))
    
    for p in fc1.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0
Casper's avatar
Casper committed
128
129

@torch.no_grad()
Casper's avatar
Casper committed
130
def scale_gelu_fc(gelu: allowed_act_fns, fc: nn.Linear, scales: torch.Tensor):
Casper's avatar
Casper committed
131
132
133
134
135
136
    assert any(isinstance(gelu,t) for t in allowed_act_fns)
    assert isinstance(fc, nn.Linear)

    fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))

    for p in fc.parameters():
137
        assert torch.isnan(p).sum() == 0