Commit ad45716f authored by twaka's avatar twaka
Browse files

gpt_neox

parent 1b54b9f9
......@@ -5,4 +5,5 @@ from .falcon import FalconAWQForCausalLM
from .bloom import BloomAWQForCausalLM
from .gptj import GPTJAWQForCausalLM
from .gpt_bigcode import GptBigCodeAWQForCausalLM
from .mistral import MistralAWQForCausalLM
\ No newline at end of file
from .mistral import MistralAWQForCausalLM
from .gpt_neox import GPTNeoXAWQForCausalLM
......@@ -13,7 +13,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"bloom": BloomAWQForCausalLM,
"gptj": GPTJAWQForCausalLM,
"gpt_bigcode": GptBigCodeAWQForCausalLM,
"mistral": MistralAWQForCausalLM
"mistral": MistralAWQForCausalLM,
"gpt_neox": GPTNeoXAWQForCausalLM,
}
def check_and_get_model_type(model_dir, trust_remote_code=True):
......
from .base import BaseAWQForCausalLM
from typing import Dict
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXLayer, GPTNeoXForCausalLM
class GPTNeoXAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GPTNeoXDecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def get_model_layers(model: GPTNeoXForCausalLM):
return model.gpt_neox.layers
@staticmethod
def get_act_for_scaling(module: GPTNeoXLayer):
return dict(
is_scalable=True,
scale_name="mlp.act",
scale_layer=module.mlp.act,
scale_shape=module.mlp.dense_h_to_4h.out_features,
)
@staticmethod
def move_embed(model: GPTNeoXForCausalLM, device: str):
model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(device)
@staticmethod
def get_layers_for_scaling(module: GPTNeoXLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.input_layernorm,
layers=[module.attention.query_key_value],
inp=input_feat['attention.query_key_value'],
))
# # attention out
# layers.append(dict(
# prev_op=module.attention.query_key_value,
# layers=[module.attention.dense],
# inp=input_feat['attention.dense'],
# ))
# NOTE: assumes "use_parallel_residual": false
# linear 1
layers.append(dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.dense_h_to_4h],
inp=input_feat['mlp.dense_h_to_4h'],
))
# linear 2
layers.append(dict(
prev_op=module.mlp.act,
layers=[module.mlp.dense_4h_to_h],
inp=input_feat['mlp.dense_4h_to_h'],
))
return layers
......@@ -5,10 +5,10 @@ from awq.modules.act import ScaledActivation
from awq.utils.module import get_op_by_name, set_op_by_name
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.activations import NewGELUActivation, PytorchGELUTanh
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation
allowed_norms = [nn.LayerNorm, LlamaRMSNorm]
allowed_act_fns = [nn.GELU, BloomGelu, NewGELUActivation, PytorchGELUTanh]
allowed_act_fns = [nn.GELU, BloomGelu, NewGELUActivation, PytorchGELUTanh, GELUActivation]
@torch.no_grad()
def apply_clip(module, clip_list: Tuple[str, torch.Tensor]):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment