scale.py 3.76 KB
Newer Older
Casper's avatar
Casper committed
1
2
import torch
import torch.nn as nn
Vik Paruchuri's avatar
Vik Paruchuri committed
3
from typing import Tuple, List
Casper's avatar
Casper committed
4
from awq.modules.act import ScaledActivation
Casper Hansen's avatar
Casper Hansen committed
5
from awq.utils.module import get_op_by_name, set_op_by_name
Casper's avatar
Casper committed
6
7
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
twaka's avatar
twaka committed
8
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation
Casper's avatar
Casper committed
9
10

allowed_norms = [nn.LayerNorm, LlamaRMSNorm]
twaka's avatar
twaka committed
11
allowed_act_fns = [nn.GELU, BloomGelu, NewGELUActivation, PytorchGELUTanh, GELUActivation]
Casper's avatar
Casper committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

@torch.no_grad()
def apply_clip(module, clip_list: Tuple[str, torch.Tensor]):
    for name, max_val in clip_list:
        layer: nn.Linear = get_op_by_name(module, name)
        layer.cuda()
        max_val = max_val.to(layer.weight.device)
        org_shape = layer.weight.shape
        layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
        layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
        layer.weight.data = layer.weight.data.reshape(org_shape)
        layer.cpu()


def apply_scale(module, scales_list, input_feat_dict=None):
    for prev_op_name, layer_names, scales in scales_list:
        prev_op = get_op_by_name(module, prev_op_name)
        layers = [get_op_by_name(module, name) for name in layer_names]

        prev_op.cuda()
        for layer in layers:
            layer.cuda()
        scales.cuda()
        
        if isinstance(prev_op, nn.Linear):
            assert len(layers) == 1
            scale_fc_fc(prev_op, layers[0], scales)

        elif any(isinstance(prev_op,t) for t in allowed_norms) \
             or 'rmsnorm' in str(prev_op.__class__).lower():
            scale_ln_fcs(prev_op, layers, scales)

        elif any(isinstance(prev_op,t) for t in allowed_act_fns):
            new_module = ScaledActivation(prev_op, scales)
            set_op_by_name(module, prev_op_name, new_module)
            scale_gelu_fc(prev_op, layers[0], scales)
            
        else:
            raise NotImplementedError(
                f"prev_op {type(prev_op)} not supported yet!")
            
        # apply the scaling to input feat if given; prepare it for clipping
        if input_feat_dict is not None:  
            for layer_name in layer_names:
                inp = input_feat_dict[layer_name]
                inp.div_(scales.view(1, -1).to(inp.device))

        prev_op.cpu()
        for layer in layers:
            layer.cpu()
        scales.cpu()

@torch.no_grad()
Vik Paruchuri's avatar
Vik Paruchuri committed
65
def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):
Casper's avatar
Casper committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    if not isinstance(fcs, list):
        fcs = [fcs]
    
    scales = scales.to(ln.weight.device)

    ln.weight.div_(scales)
    if hasattr(ln, 'bias') and ln.bias is not None:
        ln.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in ln.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0

@torch.no_grad()
Casper's avatar
Casper committed
85
def scale_fc_fc(fc1: nn.Linear, fc2: nn.Linear, scales: torch.Tensor):
Casper's avatar
Casper committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    assert isinstance(fc1, nn.Linear)
    assert isinstance(fc2, nn.Linear)
    
    scales = scales.to(fc1.weight.device)

    fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
    if fc1.bias is not None:
        fc1.bias.div_(scales.view(-1))

    fc2.weight.mul_(scales.view(1, -1))

    for p in fc1.parameters():
        assert torch.isnan(p).sum() == 0
    for p in fc2.parameters():
        assert torch.isnan(p).sum() == 0


@torch.no_grad()
Casper's avatar
Casper committed
104
def scale_gelu_fc(gelu: allowed_act_fns, fc: nn.Linear, scales: torch.Tensor):
Casper's avatar
Casper committed
105
106
107
108
109
110
111
    assert any(isinstance(gelu,t) for t in allowed_act_fns)
    assert isinstance(fc, nn.Linear)

    fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))

    for p in fc.parameters():
        assert torch.isnan(p).sum() == 0