opt.py 1.96 KB
Newer Older
Casper Hansen's avatar
Casper Hansen committed
1
2
3
from .base import BaseAWQForCausalLM
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTDecoderLayer

Casper's avatar
Casper committed
4

Casper Hansen's avatar
Casper Hansen committed
5
6
class OptAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "OPTDecoderLayer"
Casper's avatar
Casper committed
7
    max_seq_len_key = "max_position_embeddings"
Casper Hansen's avatar
Casper Hansen committed
8
9
10
11

    @staticmethod
    def get_model_layers(model: OPTForCausalLM):
        return model.model.decoder.layers
Casper's avatar
Casper committed
12

Casper Hansen's avatar
Casper Hansen committed
13
14
    @staticmethod
    def get_act_for_scaling(module: OPTDecoderLayer):
Casper's avatar
Casper committed
15
16
        return dict(is_scalable=False)

Casper Hansen's avatar
Casper Hansen committed
17
18
19
    @staticmethod
    def move_embed(model: OPTForCausalLM, device: str):
        model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(device)
Casper's avatar
Casper committed
20
21
22
23
        model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(
            device
        )

Casper Hansen's avatar
Casper Hansen committed
24
25
26
27
28
    @staticmethod
    def get_layers_for_scaling(module: OPTDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
Casper's avatar
Casper committed
29
30
31
32
33
34
35
36
37
38
39
40
41
        layers.append(
            dict(
                prev_op=module.self_attn_layer_norm,
                layers=[
                    module.self_attn.q_proj,
                    module.self_attn.k_proj,
                    module.self_attn.v_proj,
                ],
                inp=input_feat["self_attn.q_proj"],
                module2inspect=module.self_attn,
                kwargs=module_kwargs,
            )
        )
Casper Hansen's avatar
Casper Hansen committed
42
43

        # attention out
Casper's avatar
Casper committed
44
45
46
47
48
49
50
        layers.append(
            dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.out_proj],
                inp=input_feat["self_attn.out_proj"],
            )
        )
Casper Hansen's avatar
Casper Hansen committed
51
52

        # linear 1
Casper's avatar
Casper committed
53
54
55
56
57
58
59
        layers.append(
            dict(
                prev_op=module.final_layer_norm,
                layers=[module.fc1],
                inp=input_feat["fc1"],
            )
        )
Casper Hansen's avatar
Casper Hansen committed
60
61

        # linear 2
Casper's avatar
Casper committed
62
63
64
65
66
67
68
        layers.append(
            dict(
                prev_op=module.fc1,
                layers=[module.fc2],
                inp=input_feat["fc2"],
            )
        )
Casper Hansen's avatar
Casper Hansen committed
69

Casper's avatar
Casper committed
70
        return layers