from .base import BaseAWQForCausalLM from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTDecoderLayer class OptAWQForCausalLM(BaseAWQForCausalLM): layer_type = "OPTDecoderLayer" max_seq_len_key = "max_position_embeddings" @staticmethod def get_model_layers(model: OPTForCausalLM): return model.model.decoder.layers @staticmethod def get_act_for_scaling(module: OPTDecoderLayer): return dict(is_scalable=False) @staticmethod def move_embed(model: OPTForCausalLM, device: str): model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(device) model.model.decoder.embed_positions = model.model.decoder.embed_positions.to( device ) @staticmethod def get_layers_for_scaling(module: OPTDecoderLayer, input_feat, module_kwargs): layers = [] # attention input layers.append( dict( prev_op=module.self_attn_layer_norm, layers=[ module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj, ], inp=input_feat["self_attn.q_proj"], module2inspect=module.self_attn, kwargs=module_kwargs, ) ) # attention out layers.append( dict( prev_op=module.self_attn.v_proj, layers=[module.self_attn.out_proj], inp=input_feat["self_attn.out_proj"], ) ) # linear 1 layers.append( dict( prev_op=module.final_layer_norm, layers=[module.fc1], inp=input_feat["fc1"], ) ) # linear 2 layers.append( dict( prev_op=module.fc1, layers=[module.fc2], inp=input_feat["fc2"], ) ) return layers