gpt_neox.py 1.97 KB
Newer Older
twaka's avatar
twaka committed
1
from .base import BaseAWQForCausalLM
Casper's avatar
Casper committed
2
3
4
5
6
from transformers.models.gpt_neox.modeling_gpt_neox import (
    GPTNeoXLayer,
    GPTNeoXForCausalLM,
)

twaka's avatar
twaka committed
7
8
9

class GPTNeoXAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "GPTNeoXDecoderLayer"
Casper's avatar
Casper committed
10
    max_seq_len_key = "max_position_embeddings"
twaka's avatar
twaka committed
11
12
13
14

    @staticmethod
    def get_model_layers(model: GPTNeoXForCausalLM):
        return model.gpt_neox.layers
Casper's avatar
Casper committed
15

twaka's avatar
twaka committed
16
17
18
19
20
21
22
23
    @staticmethod
    def get_act_for_scaling(module: GPTNeoXLayer):
        return dict(
            is_scalable=True,
            scale_name="mlp.act",
            scale_layer=module.mlp.act,
            scale_shape=module.mlp.dense_h_to_4h.out_features,
        )
Casper's avatar
Casper committed
24

twaka's avatar
twaka committed
25
26
27
    @staticmethod
    def move_embed(model: GPTNeoXForCausalLM, device: str):
        model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(device)
Casper's avatar
Casper committed
28

twaka's avatar
twaka committed
29
30
31
32
33
    @staticmethod
    def get_layers_for_scaling(module: GPTNeoXLayer, input_feat, module_kwargs):
        layers = []

        # attention input
Casper's avatar
Casper committed
34
35
36
37
38
39
40
        layers.append(
            dict(
                prev_op=module.input_layernorm,
                layers=[module.attention.query_key_value],
                inp=input_feat["attention.query_key_value"],
            )
        )
twaka's avatar
twaka committed
41

twaka's avatar
twaka committed
42
43
44
45
46
47
48
49
50
51
        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/issues/2#issuecomment-1606297469
        """
        layers.append(dict(
            prev_op=module.attention.query_key_value,
            layers=[module.attention.dense],
            inp=input_feat['attention.dense'],
        ))
        """

twaka's avatar
twaka committed
52
        # linear 1
Casper's avatar
Casper committed
53
54
55
56
57
58
59
        layers.append(
            dict(
                prev_op=module.post_attention_layernorm,
                layers=[module.mlp.dense_h_to_4h],
                inp=input_feat["mlp.dense_h_to_4h"],
            )
        )
twaka's avatar
twaka committed
60
61

        # linear 2
Casper's avatar
Casper committed
62
63
64
65
66
67
68
        layers.append(
            dict(
                prev_op=module.mlp.act,
                layers=[module.mlp.dense_4h_to_h],
                inp=input_feat["mlp.dense_4h_to_h"],
            )
        )
twaka's avatar
twaka committed
69
70

        return layers