attn.py 10.1 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
4
5
import torch
import torch.nn as nn
import awq_inference_engine
Casper Hansen's avatar
Casper Hansen committed
6
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
7

Casper Hansen's avatar
Casper Hansen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Haotian Tang's avatar
Haotian Tang committed
62

Casper Hansen's avatar
Casper Hansen committed
63
class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
64
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
65
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
66
67
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
68
69
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
70
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
71
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
72
73
74
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
75
        self.use_alibi = use_alibi
76
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
Casper Hansen's avatar
Casper Hansen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        if attention_shapes is not None:
            self.attention_shapes = attention_shapes

        elif self.n_kv_heads == 0:
            self.attention_shapes = {
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (-1, self.n_heads, self.head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, 0],
                "xk_slice": lambda xqkv: xqkv[:, :, 1],
                "xv_slice": lambda xqkv: xqkv[:, :, 2],
                "xq_view": (self.n_heads, self.head_dim),
                "xk_view": (self.n_heads, self.head_dim),
                "xv_view": (self.n_heads, self.head_dim),
                "xk_reshape": (self.n_heads, self.head_dim // 8, 8),
                "single_xq_view": (self.n_heads, self.head_dim),
                "single_xk_view": (self.n_heads, self.head_dim),
                "single_xv_view": (self.n_heads, self.head_dim)
            }

        else:
            self.attention_shapes = {
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_kv_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_kv_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (self.n_heads + self.n_kv_heads * 2, self.head_dim),
107
                "xq_slice": lambda xqkv: xqkv[:, :, 0 : self.n_heads],
Casper Hansen's avatar
Casper Hansen committed
108
109
                "xk_slice": lambda xqkv: xqkv[:, :, self.n_heads : (self.n_heads + self.n_kv_heads)],
                "xv_slice": lambda xqkv: xqkv[:, :, -self.n_kv_heads :],
110
                "xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
111
112
113
                "xk_view": (self.n_kv_heads, self.head_dim),
                "xv_view": (self.n_kv_heads, self.head_dim),
                "xk_reshape": (self.n_kv_heads, self.head_dim // 8, 8),
114
                "single_xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
115
116
117
                "single_xk_view": (self.n_kv_heads, self.head_dim),
                "single_xv_view": (self.n_kv_heads, self.head_dim)
            }
Casper Hansen's avatar
Casper Hansen committed
118

Casper Hansen's avatar
Casper Hansen committed
119
        self.cache_v = (
120
            torch.zeros(self.attention_shapes["cache_v"]).to(dev).half()
121
122
        )
        
Casper Hansen's avatar
Casper Hansen committed
123
        self.cache_k = (
124
            torch.zeros(self.attention_shapes["cache_k"]).to(dev).half()
125
        )
126

Casper Hansen's avatar
Casper Hansen committed
127
        if use_alibi:
Casper Hansen's avatar
Casper Hansen committed
128
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_heads, max_seq_len)
Casper Hansen's avatar
Casper Hansen committed
129
130
131
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
132
            self.is_neox = False
Casper Hansen's avatar
Casper Hansen committed
133
134
        else:
            self.freqs_cis = precompute_freqs_cis(
Casper Hansen's avatar
Casper Hansen committed
135
                hidden_size // n_heads,
Casper Hansen's avatar
Casper Hansen committed
136
137
                max_seq_len * 2,
            ).to(dev)
138
            self.rotary_dim = self.head_dim
Casper Hansen's avatar
Casper Hansen committed
139
            self.alibi_slopes = None
140
            self.is_neox = True
141
    
Casper Hansen's avatar
Casper Hansen committed
142
143
144
145
146
    def forward(
        self,
        hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False
    ):
        bsz, seqlen, _ = hidden_states.shape
147
148
149
150
151
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
Casper Hansen's avatar
Casper Hansen committed
152
        xqkv = self.qkv_proj(hidden_states)
153
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
154
        
155
156
157
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
158

Casper Hansen's avatar
Casper Hansen committed
159
        if seqlen > 1:
Casper Hansen's avatar
Casper Hansen committed
160
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
161
162
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
163

164
165
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
166

Casper Hansen's avatar
Casper Hansen committed
167
168
            self.cache_k = self.cache_k.to(xq)
            self.cache_v = self.cache_v.to(xq)
Haotian Tang's avatar
Haotian Tang committed
169

Casper Hansen's avatar
Casper Hansen committed
170
171
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
172
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
173
174
175
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Haotian Tang's avatar
Haotian Tang committed
176

Casper Hansen's avatar
Casper Hansen committed
177
178
179
            self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :] = values_store
            self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :] = keys_store

Casper Hansen's avatar
Casper Hansen committed
180
181
            keys = xk
            values = xv
182
183
184
185
186

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
187
            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores += self.alibi_bias[..., :seqlen]

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
203
        else:
204
205
206
207
208
209
210
            # xq = xq[:, 0, :, :]
            # xk = xk[:, 0, :, :]
            # xv = xv[:, 0, :, :]
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
211
            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
212
            attention_weight = awq_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
213
214
215
216
217
218
219
220
221
222
                xq, # query
                xk, # key
                xv, # value
                self.cache_k, # key cache
                self.cache_v, # value cache
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
223
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
224
            )
Casper Hansen's avatar
Casper Hansen committed
225
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
226
        
Casper Hansen's avatar
Casper Hansen committed
227
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
228
229
230
231
232
        
        if use_cache:
            self.start_pos += seqlen
        else:
            self.start_pos = 0
Haotian Tang's avatar
Haotian Tang committed
233

Casper Hansen's avatar
Casper Hansen committed
234
        return attn_output, attention_weight, past_key_value