base.py 13.8 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import gc
3
import json
Casper Hansen's avatar
Casper Hansen committed
4
5
6
import torch
import functools
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
7
from tqdm import tqdm
Casper Hansen's avatar
Casper Hansen committed
8
9
from collections import defaultdict

10
from huggingface_hub import snapshot_download
Casper Hansen's avatar
Casper Hansen committed
11
from awq.utils.calib_data import get_calib_dataset
12
13
from awq.quantize.quantizer import pseudo_quantize_tensor
from awq.quantize.qmodule import WQLinear, ScaledActivation
Casper Hansen's avatar
Casper Hansen committed
14
15
from awq.quantize.auto_clip import auto_clip_block, apply_clip
from awq.quantize.auto_scale import auto_scale_block, apply_scale
16
17
from transformers import AutoModelForCausalLM, AutoConfig, PreTrainedModel
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map
Casper Hansen's avatar
Casper Hansen committed
18
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name
Casper Hansen's avatar
Casper Hansen committed
19

20
class BaseAWQForCausalLM(nn.Module):
21
    def __init__(self, model, model_type, is_quantized, quant_config):
22
        super().__init__()
23
24
25
26
        self.model:PreTrainedModel = model
        self.model_type:str = model_type
        self.is_quantized:bool = is_quantized
        self.search_result = None
27
        self.quant_config:dict = quant_config
28
29
30
31
32
33
    
    def to(self, device: str):
        return self.model.to(device)
    
    def forward(self, *args, **kwargs):
        return self.model(*args, **kwargs)
Casper Hansen's avatar
Casper Hansen committed
34
35
36
37
    
    def generate(self, *args, **kwargs):
        with torch.inference_mode():
            return self.model.generate(*args, **kwargs)
38

Casper Hansen's avatar
Casper Hansen committed
39
    @torch.no_grad()
40
    def quantize(self, tokenizer=None, quant_config={}, n_samples=128, seqlen=512,
41
                       auto_scale=True, mse_range=True, run_search=True, run_quant=True,
Casper Hansen's avatar
Casper Hansen committed
42
                       calib_data="pileval"):
43
        self.quant_config = quant_config
44

Casper Hansen's avatar
Casper Hansen committed
45
        if run_search:
46
            self.search_result = self._awq_search(tokenizer, quant_config, n_samples=n_samples, seqlen=seqlen,
Casper Hansen's avatar
Casper Hansen committed
47
48
49
                       auto_scale=auto_scale, mse_range=mse_range, calib_data=calib_data)
        
        if run_quant:
50
            self._awq_quant()
Casper Hansen's avatar
Casper Hansen committed
51
            self.is_quantized = True
Casper Hansen's avatar
Casper Hansen committed
52
    
qwopqwop200's avatar
qwopqwop200 committed
53
54
55
56
    @staticmethod
    def fuse_layers(model):
        pass
        
57
58
    def _awq_quant(self):
        assert self.quant_config["zero_point"], "We only support zero_point quantization now."
59
        layers = self.get_model_layers(self.model)
Casper's avatar
Casper committed
60

Casper Hansen's avatar
Casper Hansen committed
61
62
63
64
        # Run AWQ quantization
        for i in tqdm(range(len(layers)), desc="AWQ Quantization"):
            layer = layers[i]
            named_linears = get_named_linears(layer)
65
            self._scale_activations(self, layer)
Casper Hansen's avatar
Casper Hansen committed
66
67

            for name, module in named_linears.items():
Casper Hansen's avatar
Casper Hansen committed
68
                module.cuda()
69
70
71
72
73
74
75

                module.weight.data, scales, zeros = pseudo_quantize_tensor(
                    module.weight.data, 
                    get_scale_zp=True, 
                    **self.quant_config
                )

Casper Hansen's avatar
Casper Hansen committed
76
77
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
78

Casper Hansen's avatar
Casper Hansen committed
79
                q_linear = WQLinear.from_linear(
80
81
82
83
84
85
86
87
                    module, 
                    self.quant_config['w_bit'], 
                    self.quant_config['q_group_size'], 
                    False, 
                    scales, 
                    zeros
                )

Casper Hansen's avatar
Casper Hansen committed
88
89
90
91
92
                module.cpu()
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
                torch.cuda.empty_cache()
                gc.collect()
Casper Hansen's avatar
Casper Hansen committed
93
94
95
96
            
            torch.cuda.empty_cache()
            gc.collect()
    
97
    def _awq_search(self, tokenizer, quant_config, n_samples=128, seqlen=512,
Casper Hansen's avatar
Casper Hansen committed
98
                       auto_scale=True, mse_range=True, calib_data="pileval"):
99
        layers = self.get_model_layers(self.model)
Casper Hansen's avatar
Casper Hansen committed
100
101
102
103
104
105
106
107
108

        samples = get_calib_dataset(
            data=calib_data, tokenizer=tokenizer, n_samples=n_samples, block_size=seqlen)
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

        layers[0] = layers[0].cuda()
109
        self.move_embed(self.model, "cuda")
Casper Hansen's avatar
Casper Hansen committed
110
111
112
113
114
115
116
117
118
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

Casper's avatar
Casper committed
119
120
            def forward(self, hijacked_inputs, **kwargs):
                inps.append(hijacked_inputs)
Casper Hansen's avatar
Casper Hansen committed
121
122
123
124
125
126
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
        layers[0] = Catcher(layers[0])
        try:
127
            self.model(samples.to(next(self.model.parameters()).device))
Casper Hansen's avatar
Casper Hansen committed
128
129
130
131
132
133
134
        except ValueError:  # work with early exit
            pass
        del samples
        layers[0] = layers[0].module  # restore
        inps = inps[0]

        layers[0] = layers[0].cpu()
135
        self.move_embed(self.model, "cpu")
Casper Hansen's avatar
Casper Hansen committed
136
137
138
139
140
141
142
143
        
        gc.collect()
        torch.cuda.empty_cache()
        awq_results = {
            "scale": [],
            "clip": [],
        }

Casper Hansen's avatar
Casper Hansen committed
144
        # Run AWQ search layer by layer
145
        for i in tqdm(range(len(layers)), desc="AWQ Search"):
Casper Hansen's avatar
Casper Hansen committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            layer = layers[i]
            layer = layer.cuda()
            named_linears = get_named_linears(layer)

            # firstly, get input features of all linear layers
            def cache_input_hook(m, x, y, name, feat_dict):
                x = x[0]
                x = x.detach().cpu()
                feat_dict[name].append(x)

            input_feat = defaultdict(list)
            handles = []
            for name in named_linears:
                handles.append(named_linears[name].register_forward_hook(
                    functools.partial(cache_input_hook, name=name,
                                    feat_dict=input_feat)))
            inps = inps.to(next(layer.parameters()).device)  # in case multi-gpu
            # get output as next layer's input
            inps = layer(inps, **layer_kwargs)[0]
            for h in handles:
                h.remove()
            # now solve for scaling and clipping
            input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}

            # Clear GPU memory
            torch.cuda.empty_cache()

            if auto_scale:  # if it applies, we should also modify the input_feat with scales
                scales_list = auto_scale_block(
                    self,
176
177
178
                    layer,
                    layer_kwargs,
                    quant_config=quant_config,
Casper Hansen's avatar
Casper Hansen committed
179
180
                    input_feat=input_feat,
                )
181

Casper Hansen's avatar
Casper Hansen committed
182
                apply_scale(layers[i], scales_list, input_feat_dict=input_feat)
183

Casper Hansen's avatar
Casper Hansen committed
184
                # append prefix to make names global
185
                awq_results["scale"] += append_str_prefix(scales_list, get_op_name(self.model, layer) + ".")
Casper Hansen's avatar
Casper Hansen committed
186
187
188
189
190

            # Clear GPU memory
            torch.cuda.empty_cache()
            
            if mse_range:
191
192
193
194
195
196
                clip_list = auto_clip_block(
                    layer,
                    quant_config=quant_config,
                    input_feat=input_feat
                )

Casper Hansen's avatar
Casper Hansen committed
197
198
                apply_clip(layer, clip_list)
                # append prefix to make names global
199
                awq_results["clip"] += append_str_prefix(clip_list, get_op_name(self.model, layer) + ".")
Casper Hansen's avatar
Casper Hansen committed
200
201
202
203
204
205

            layer = layer.cpu()
            # Haotian: check activation replacement
            del input_feat
            gc.collect()
            torch.cuda.empty_cache()
Casper Hansen's avatar
Casper Hansen committed
206
        
Casper Hansen's avatar
Casper Hansen committed
207
        return awq_results
Casper's avatar
Casper committed
208

209
    def save_quantized(self, save_dir):
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        def _save_files(save_dir, model_name, model):
            class EmptyModule(nn.Module):
                def __init__(self): super(EmptyModule, self).__init__()
                def forward(self, x): return x

            # Save model fiels without search results
            self.model.save_pretrained(save_dir, state_dict=EmptyModule().state_dict())

            # Remove empty module
            os.remove(f'{save_dir}/pytorch_model.bin')

            # Save search results
            torch.save(model, f'{save_dir}/{model_name}')

224
225
226
227
            # Save config
            with open(f'{save_dir}/quant_config.json', 'w+') as file:
                file.write(json.dumps(self.quant_config, indent=4))

228
229
230
        save_dir = save_dir[:-1] if save_dir[-1] == '/' else save_dir

        # Save model
Casper Hansen's avatar
Casper Hansen committed
231
        if self.search_result is None or self.is_quantized:
Casper Hansen's avatar
Casper Hansen committed
232
            model_name = f'awq_model_w{self.quant_config["w_bit"]}_g{self.quant_config["q_group_size"]}.pt'
233
            _save_files(save_dir, model_name, self.model.state_dict())
234
235
        else:
            model_name = 'awq_model_search_result.pt'
236
237
            _save_files(save_dir, model_name, self.search_result)
        
238
239
    @classmethod
    def from_pretrained(self, model_path, model_type, torch_dtype: torch.dtype = torch.float16, 
Casper Hansen's avatar
Casper Hansen committed
240
                        trust_remote_code=True, safetensors=False):
241
242
243
        return self.from_quantized(
            model_path, 
            model_type, 
244
            model_filename='', 
245
            max_new_tokens=None,
246
247
248
            device='balanced', 
            torch_dtype=torch_dtype, 
            trust_remote_code=trust_remote_code, 
Casper Hansen's avatar
Casper Hansen committed
249
            safetensors=safetensors,
250
251
            is_quantized=False
        )
Casper's avatar
Casper committed
252

253
    @classmethod
254
    def from_quantized(self, model_path, model_type, model_filename, max_new_tokens=None,
255
                       device='balanced', torch_dtype=torch.float16, trust_remote_code=True, 
256
                       safetensors=False, is_quantized=True, fuse_layers=False):
257
        # [STEP 1] Download model if path is not a directory
258
        if not os.path.isdir(model_path):
259
260
261
262
263
264
265
            ignore_patterns = ["*msgpack*", "*h5*"]
            if safetensors:
                ignore_patterns.extend(["*.pt", "*.bin"])
            else:
                ignore_patterns.append("*safetensors*")

            model_path = snapshot_download(model_path, ignore_patterns=ignore_patterns)
266
267
268
        
        # TODO: Better naming, model_filename becomes a directory
        model_filename = model_path + f'/{model_filename}'
269

270
        # [STEP 2] Load config and set sequence length
271
        # TODO: Create BaseAWQConfig class
272
273
274
275
276
277
278
279
        quant_config_path = f'{model_path}/quant_config.json'
        if os.path.exists(quant_config_path):
            with open(quant_config_path, 'r') as file:
                quant_config = json.loads(file.read())
        else:
            # Default config that works for most models
            quant_config = {"zero_point": True, "q_group_size": 128, "w_bit": 4}
        
280
281
282
283
284
285
286
287
288
        # Load model config and set max generation length
        if max_new_tokens is None and hasattr(self, 'max_new_tokens_key'):
            config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code)
            config.max_new_tokens = getattr(config, self.max_new_tokens_key)
        else:
            max_new_tokens = 2048 if max_new_tokens is None else max_new_tokens
            config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code)
            config.max_new_tokens = max_new_tokens
        
289
        # [STEP 3] Load model
290
        with init_empty_weights():
291
292
            model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code)
        
293
        # Only need to replace layers if a model is AWQ quantized
294
295
        if is_quantized:
            # Prepare WQLinear layers, replace nn.Linear
296
            self._load_quantized_modules(self, model, quant_config)
297
298
        
        model.tie_weights()
299

300
        # Load model weights
301
        if is_quantized:
302
303
            model = load_checkpoint_and_dispatch(model, model_filename, device_map=device, no_split_module_classes=[self.layer_type])

304
305
306
            if fuse_layers:
                self.fuse_layers(model)

307
308
        else:
            # If not quantized, must load with AutoModelForCausalLM
309
310
311
312
313
314
315
316
317
318
            device_map = infer_auto_device_map(
                model,
                no_split_module_classes=[self.layer_type], 
                dtype=torch_dtype
            )
            
            del model
            
            # Load model weights
            model = AutoModelForCausalLM.from_pretrained(
Casper Hansen's avatar
Casper Hansen committed
319
                model_filename, device_map=device_map, offload_folder="offload", offload_state_dict=True, torch_dtype=torch_dtype, use_safetensors=safetensors
320
321
            )
            model.eval()
322

323
        return self(model, model_type, is_quantized=is_quantized, quant_config=quant_config)
Casper's avatar
Casper committed
324

325
    def _load_quantized_modules(self, model, quant_config):
326
        # Real quantization of weights
327
        assert quant_config["zero_point"], "We only support zero_point quantization now."
328
329
        
        # Get blocks of model
330
        layers = self.get_model_layers(model)
331

332
333
        for i in tqdm(range(len(layers)), desc="Replacing layers..."):
            layer = layers[i]
334
335

            # Get every linear layer in a block
336
            named_linears = get_named_linears(layer)
337
338

            # Replace activation functions
339
            self._scale_activations(self, layer)
340

341
            # Replace nn.Linear with WQLinear
342
343
            for name, module in named_linears.items():
                q_linear = WQLinear.from_linear(
344
                    module, quant_config['w_bit'], quant_config['q_group_size'], True)
345
346
347
348
349
350
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
            
            torch.cuda.empty_cache()
            gc.collect()
    
351
    @staticmethod
352
    def _scale_activations(self, layer):
353
        scale_dict = self.get_act_for_scaling(layer)
354

355
356
357
        if scale_dict['is_scalable']:
            if not isinstance(scale_dict['scale_layer'], ScaledActivation):
                param = next(layer.parameters())
358

359
360
                # get activation scale
                scale_like = torch.ones(scale_dict['scale_shape'], dtype=param.dtype, device=param.device)
361

362
363
                # scale activation
                scaled_act = ScaledActivation(scale_dict['scale_layer'], scale_like)
Casper's avatar
Casper committed
364
                set_op_by_name(layer, scale_dict['scale_name'], scaled_act)