base.py 10.3 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
3
4
5
import gc
import torch
import functools
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
6
from tqdm import tqdm
Casper Hansen's avatar
Casper Hansen committed
7
8
from collections import defaultdict

9
from huggingface_hub import snapshot_download
Casper Hansen's avatar
Casper Hansen committed
10
from awq.utils.calib_data import get_calib_dataset
11
from transformers import AutoModelForCausalLM, AutoConfig, PreTrainedModel
12
13
from awq.quantize.quantizer import pseudo_quantize_tensor
from awq.quantize.qmodule import WQLinear, ScaledActivation
Casper Hansen's avatar
Casper Hansen committed
14
15
from awq.quantize.auto_clip import auto_clip_block, apply_clip
from awq.quantize.auto_scale import auto_scale_block, apply_scale
16
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
Casper Hansen's avatar
Casper Hansen committed
17
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name
Casper Hansen's avatar
Casper Hansen committed
18

Casper's avatar
Casper committed
19
class BaseAWQForCausalLM:
20
    def __init__(self, model, model_type, is_quantized):
21
22
23
24
        self.model:PreTrainedModel = model
        self.model_type:str = model_type
        self.is_quantized:bool = is_quantized
        self.search_result = None
25

Casper Hansen's avatar
Casper Hansen committed
26
    @torch.no_grad()
27
    def quantize(self, tokenizer=None, w_bit=4, q_config={}, n_samples=128, seqlen=512,
Casper Hansen's avatar
Casper Hansen committed
28
                       auto_scale=True, mse_range=True, run_search=False, run_quant=True,
Casper Hansen's avatar
Casper Hansen committed
29
                       calib_data="pileval"):
30

Casper Hansen's avatar
Casper Hansen committed
31
        if run_search:
32
            self.search_result = self._awq_search(tokenizer, w_bit, q_config, n_samples=n_samples, seqlen=seqlen,
Casper Hansen's avatar
Casper Hansen committed
33
34
35
                       auto_scale=auto_scale, mse_range=mse_range, calib_data=calib_data)
        
        if run_quant:
36
            self._awq_quant(w_bit, q_config)
Casper Hansen's avatar
Casper Hansen committed
37
38
    
    
39
    def _awq_quant(self, w_bit, q_config):
Casper Hansen's avatar
Casper Hansen committed
40
        assert q_config["zero_point"], "We only support zero_point quantization now."
41
        layers = self.get_model_layers(self.model)
Casper's avatar
Casper committed
42

Casper Hansen's avatar
Casper Hansen committed
43
44
45
46
        # Run AWQ quantization
        for i in tqdm(range(len(layers)), desc="AWQ Quantization"):
            layer = layers[i]
            named_linears = get_named_linears(layer)
47
            self._scale_activations(self, layer)
Casper Hansen's avatar
Casper Hansen committed
48
49

            for name, module in named_linears.items():
Casper Hansen's avatar
Casper Hansen committed
50
51
52
53
54
55
56
57
58
59
60
                module.cuda()
                module.weight.data, scales, zeros = pseudo_quantize_tensor(module.weight.data, n_bit=w_bit, get_scale_zp=True, **q_config)
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
                q_linear = WQLinear.from_linear(
                    module, w_bit, q_config['q_group_size'], False, scales, zeros)
                module.cpu()
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
                torch.cuda.empty_cache()
                gc.collect()
Casper Hansen's avatar
Casper Hansen committed
61
62
63
64
            
            torch.cuda.empty_cache()
            gc.collect()
    
65
    def _awq_search(self, tokenizer, w_bit, q_config, n_samples=128, seqlen=512,
Casper Hansen's avatar
Casper Hansen committed
66
                       auto_scale=True, mse_range=True, calib_data="pileval"):
67
        layers = self.get_model_layers(self.model)
Casper Hansen's avatar
Casper Hansen committed
68
69
70
71
72
73
74
75
76

        samples = get_calib_dataset(
            data=calib_data, tokenizer=tokenizer, n_samples=n_samples, block_size=seqlen)
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

        layers[0] = layers[0].cuda()
77
        self.move_embed(self.model, "cuda")
Casper Hansen's avatar
Casper Hansen committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

            def forward(self, inp, **kwargs):
                inps.append(inp)
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
        layers[0] = Catcher(layers[0])
        try:
95
            self.model(samples.to(next(self.model.parameters()).device))
Casper Hansen's avatar
Casper Hansen committed
96
97
98
99
100
101
102
        except ValueError:  # work with early exit
            pass
        del samples
        layers[0] = layers[0].module  # restore
        inps = inps[0]

        layers[0] = layers[0].cpu()
103
        self.move_embed(self.model, "cpu")
Casper Hansen's avatar
Casper Hansen committed
104
105
106
107
108
109
110
111
        
        gc.collect()
        torch.cuda.empty_cache()
        awq_results = {
            "scale": [],
            "clip": [],
        }

Casper Hansen's avatar
Casper Hansen committed
112
        # Run AWQ search layer by layer
113
        for i in tqdm(range(len(layers)), desc="AWQ Search"):
Casper Hansen's avatar
Casper Hansen committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            layer = layers[i]
            layer = layer.cuda()
            named_linears = get_named_linears(layer)

            # firstly, get input features of all linear layers
            def cache_input_hook(m, x, y, name, feat_dict):
                x = x[0]
                x = x.detach().cpu()
                feat_dict[name].append(x)

            input_feat = defaultdict(list)
            handles = []
            for name in named_linears:
                handles.append(named_linears[name].register_forward_hook(
                    functools.partial(cache_input_hook, name=name,
                                    feat_dict=input_feat)))
            inps = inps.to(next(layer.parameters()).device)  # in case multi-gpu
            # get output as next layer's input
            inps = layer(inps, **layer_kwargs)[0]
            for h in handles:
                h.remove()
            # now solve for scaling and clipping
            input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}

            # Clear GPU memory
            torch.cuda.empty_cache()

            if auto_scale:  # if it applies, we should also modify the input_feat with scales
                scales_list = auto_scale_block(
                    self,
                    layer, layer_kwargs,
                    w_bit=w_bit, q_config=q_config,
                    input_feat=input_feat,
                )
                # apply_scale(layer, scales_list, input_feat_dict=input_feat)
                apply_scale(layers[i], scales_list, input_feat_dict=input_feat)
                # append prefix to make names global
151
                awq_results["scale"] += append_str_prefix(scales_list, get_op_name(self.model, layer) + ".")
Casper Hansen's avatar
Casper Hansen committed
152
153
154
155
156
157
158
159
160
161

            # Clear GPU memory
            torch.cuda.empty_cache()
            
            if mse_range:
                clip_list = auto_clip_block(layer,
                                w_bit=w_bit, q_config=q_config,
                                input_feat=input_feat,)
                apply_clip(layer, clip_list)
                # append prefix to make names global
162
                awq_results["clip"] += append_str_prefix(clip_list, get_op_name(self.model, layer) + ".")
Casper Hansen's avatar
Casper Hansen committed
163
164
165
166
167
168

            layer = layer.cpu()
            # Haotian: check activation replacement
            del input_feat
            gc.collect()
            torch.cuda.empty_cache()
Casper Hansen's avatar
Casper Hansen committed
169
        
Casper Hansen's avatar
Casper Hansen committed
170
        return awq_results
Casper's avatar
Casper committed
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def save_quantized(self, save_dir):
        save_dir = save_dir[:-1] if save_dir[-1] == '/' else save_dir

        # Save model
        if self.search_result is None:
            self.model.save_pretrained(save_dir, state_dict=self.model.state_dict())
        else:
            self.model.save_pretrained(save_dir, state_dict=self.search_result)
        
        # TODO: Rename model name & save quant_config
        if self.search_result is not None:
            model_name = 'awq_model_search_result.pt'
        else:
            model_name = 'awq_model_w4_g128.pt'

    @classmethod
    def from_pretrained(self, model_path, model_type, torch_dtype: torch.dtype = torch.float16, 
                        trust_remote_code=True):
        return self.from_quantized(
            model_path, 
            model_type, 
            quant_file='', 
            device='balanced', 
            torch_dtype=torch_dtype, 
            trust_remote_code=trust_remote_code, 
            is_quantized=False
        )
Casper's avatar
Casper committed
199

200
    @classmethod
201
202
203
204
205
206
    def from_quantized(self, model_path, model_type, quant_file, w_bit=4, q_config={}, 
                       device='balanced', torch_dtype=torch.float16, trust_remote_code=True, is_quantized=True):
        # Download model
        model_path = snapshot_download(model_path)
        quant_path = model_path + f'/{quant_file}' if is_quantized else model_path

207
208
209
210
211
        # Load config
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code)

        # Load empty weights
        with init_empty_weights():
212
213
214
215
216
217
218
219
            model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code)
        
        # Only need to replace layers if a model is AWQ quantized 
        if is_quantized:
            # Prepare WQLinear layers, replace nn.Linear
            self._load_quantized_modules(self, model, w_bit, q_config)
        
        model.tie_weights()
220
221
        
        # Load model weights
222
        model = load_checkpoint_and_dispatch(model, quant_path, device_map=device, no_split_module_classes=[self.layer_type])
223

224
        return self(model, model_type, is_quantized=is_quantized)
Casper's avatar
Casper committed
225

226
227
    def _load_quantized_modules(self, model, w_bit, q_config):
        # Real quantization of weights
228
        assert q_config["zero_point"], "We only support zero_point quantization now."
229
230
        
        # Get blocks of model
231
        layers = self.get_model_layers(model)
232

233
234
        for i in tqdm(range(len(layers)), desc="Replacing layers..."):
            layer = layers[i]
235
236

            # Get every linear layer in a block
237
            named_linears = get_named_linears(layer)
238
239

            # Replace activation functions
240
            self._scale_activations(self, layer)
241

242
            # Replace nn.Linear with WQLinear
243
244
245
246
247
248
249
250
251
            for name, module in named_linears.items():
                q_linear = WQLinear.from_linear(
                    module, w_bit, q_config['q_group_size'], True)
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
            
            torch.cuda.empty_cache()
            gc.collect()
    
252
    @staticmethod
253
254
255
256
257
258
259
260
261
262
263
264
265
    def _scale_activations(self, layer):
        act_function = self.get_act_from_layer(layer)

        if act_function is not None and not isinstance(act_function, ScaledActivation):
            param = next(layer.parameters())

            # get activation scale
            scale_dict = self.get_act_for_scaling(layer)
            scale_like = torch.ones(scale_dict['scale_shape'], dtype=param.dtype, device=param.device)

            # scale activation
            scaled_act = ScaledActivation(scale_dict['scale_layer'], scale_like)
            set_op_by_name(layer, scale_dict['scale_name'], scaled_act)