auto_scale.py 11.8 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
3
import torch
import torch.nn as nn

4
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomGelu
Ji Lin's avatar
Ji Lin committed
5
6
7
from transformers.models.opt.modeling_opt import OPTDecoderLayer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm

8
9
from .qmodule import ScaledActivation
from ..utils.module import get_op_by_name, get_op_name, set_op_by_name
Ji Lin's avatar
Ji Lin committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

__all__ = ["auto_scale_block", "apply_scale"]


@torch.no_grad()
def get_weight_scale(weight, q_group_size=-1):
    org_shape = weight.shape
    if q_group_size > 0:
        weight = weight.view(-1, q_group_size)
    scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
    scale = scale.view(org_shape)
    scale = scale.mean(0)
    return scale


@torch.no_grad()
def get_act_scale(x):
    return x.abs().view(-1, x.shape[-1]).mean(0)


@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
    if not isinstance(fcs, list):
        fcs = [fcs]
    
    scales = scales.to(ln.weight.device)

37
38
39
40
41
42
43
    # debugging start even scales = 1 does not work?
    """
    scales = scales * 0
    scales = scales + 1
    """
    # debugging end

Ji Lin's avatar
Ji Lin committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    ln.weight.div_(scales)
    if hasattr(ln, 'bias') and ln.bias is not None:
        ln.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in ln.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0


@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
    assert isinstance(fc1, nn.Linear)
    assert isinstance(fc2, nn.Linear)
62
    # assert fc1.out_features == fc2.in_features
Ji Lin's avatar
Ji Lin committed
63
64
65
    
    scales = scales.to(fc1.weight.device)

66
67
    # fc1.weight.div_(scales.view(-1, 1))
    fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
Ji Lin's avatar
Ji Lin committed
68
69
70
71
72
73
74
75
76
77
78
    if fc1.bias is not None:
        fc1.bias.div_(scales.view(-1))

    fc2.weight.mul_(scales.view(1, -1))

    for p in fc1.parameters():
        assert torch.isnan(p).sum() == 0
    for p in fc2.parameters():
        assert torch.isnan(p).sum() == 0


79
80
81
82
83
84
85
86
87
88
89
@torch.no_grad()
def scale_gelu_fc(gelu, fc, scales):
    assert isinstance(gelu, nn.GELU) or isinstance(gelu, BloomGelu)
    assert isinstance(fc, nn.Linear)

    fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))

    for p in fc.parameters():
        assert torch.isnan(p).sum() == 0
    

Ji Lin's avatar
Ji Lin committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
@torch.no_grad()
def auto_scale_block(module, module_kwargs,
                     w_bit, q_config,
                     input_feat):
    from .quantizer import pseudo_quantize_tensor
    # firstly, get the weight quantize function
    if w_bit is not None:
        def w_quantize_func(p): return pseudo_quantize_tensor(
            p, n_bit=w_bit, **q_config,
        ).detach()
    else:
        def w_quantize_func(p): return p

    if "use_cache" in module_kwargs:
        module_kwargs.pop("use_cache")

    # find the best scale ratio
    def _search_module_scale(block, linears2scale: list, x, kwargs={}):
        # w: co, ci
        # x: n, ci
        weight = torch.cat([_m.weight for _m in linears2scale], dim=0)
        w_max = get_weight_scale(
            weight, q_group_size=q_config.get("q_group_size", -1))
113
114
115
        # Clear GPU memory
        del weight
        torch.cuda.empty_cache()
Ji Lin's avatar
Ji Lin committed
116

117
        x = x.to(next(block.parameters()).device)
Ji Lin's avatar
Ji Lin committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        with torch.no_grad():
            org_out = block(x, **kwargs)
            if isinstance(org_out, tuple):
                org_out = org_out[0]

        x_max = get_act_scale(x)

        best_error = float('inf')
        best_ratio = -1
        best_scales = None

        n_grid = 20
        history = []

132
133
        # Clear GPU memory
        torch.cuda.empty_cache()
Ji Lin's avatar
Ji Lin committed
134
135
136
137
138
139
140
        org_sd = {k: v.cpu() for k, v in block.state_dict().items()}
        for ratio in range(n_grid):
            ratio = ratio * 1 / n_grid
            scales = (x_max.pow(ratio) / w_max.pow(1-ratio)
                      ).clamp(min=1e-4).view(-1)
            scales = scales / (scales.max() * scales.min()).sqrt()
            for fc in linears2scale:
141
                fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
Ji Lin's avatar
Ji Lin committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                fc.weight.data = w_quantize_func(
                    fc.weight.data) / (scales.view(1, -1))
            out = block(x, **kwargs)
            if isinstance(out, tuple):
                out = out[0]

            loss = (org_out - out).float().pow(2).mean().item()  # float prevents overflow
            history.append(loss)
            is_best = loss < best_error
            if is_best:
                best_error = loss
                best_ratio = ratio
                best_scales = scales
            block.load_state_dict(org_sd)
        if best_ratio == -1:
            print(history)
            raise Exception
        # print(best_ratio)
        best_scales = best_scales.view(-1)

        assert torch.isnan(best_scales).sum() == 0, best_scales
        return best_scales.detach()

    def _auto_get_scale(prev_op, layers, inp, module2inspect=None, kwargs={}):
        # module2inspect: if given, we will check the output diff of this module instead of layers
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]

        scales = _search_module_scale(module2inspect, layers, inp, kwargs)
        # prev_op_name, [layer_name], scale
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), scales)

    scales_list = []  # return the searched scales

    if isinstance(module, OPTDecoderLayer):
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn_layer_norm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))
        # attn out
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn.v_proj,
            layers=[module.self_attn.out_proj],
            inp=input_feat['self_attn.out_proj'],
        ))
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.final_layer_norm,
            layers=[module.fc1],
            inp=input_feat['fc1'],
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.fc1,
            layers=[module.fc2],
            inp=input_feat['fc2'],
        ))

    elif isinstance(module, LlamaDecoderLayer):
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))
        # attn out
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn.v_proj,
            layers=[module.self_attn.o_proj],
            inp=input_feat['self_attn.o_proj'],
        ))
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))
233
234
235
236
237
238
239
240
241
242
    
    elif isinstance(module, BloomBlock):
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.input_layernorm,
            layers=[module.self_attention.query_key_value],
            inp=input_feat['self_attention.query_key_value'],
            module2inspect=module, kwargs=module_kwargs,
        ))
        # attn out
Jiaming Tang's avatar
Jiaming Tang committed
243
        # Please refer to https://github.com/mit-han-lab/llm-awq/issues/2#issuecomment-1606297469
244
245
246
247
        """
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attention.query_key_value,
            layers=[module.self_attention.dense],
Jiaming Tang's avatar
Jiaming Tang committed
248
            inp=input_feat['self_attention.dense'],
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        ))
        """
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.dense_h_to_4h],
            inp=input_feat['mlp.dense_h_to_4h'],
            module2inspect=module, kwargs=module_kwargs,
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.mlp.gelu_impl,
            layers=[module.mlp.dense_4h_to_h],
            inp=input_feat['mlp.dense_4h_to_h'],
        ))
    elif "mpt" in str(module.__class__).lower():
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.norm_1,
            layers=[module.attn.Wqkv],
            inp=input_feat['attn.Wqkv'],
            module2inspect=module.attn, 
            kwargs=module_kwargs,
        ))
        
        # attn out
        scales_list.append(_auto_get_scale(
            prev_op=module.attn.Wqkv,
            layers=[module.attn.out_proj],
            inp=input_feat['attn.out_proj'],
        ))
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.norm_2,
            layers=[module.ffn.up_proj],
            inp=input_feat['ffn.up_proj'],
            module2inspect=module.ffn,
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.ffn.act,
            layers=[module.ffn.down_proj],
            inp=input_feat['ffn.down_proj'],
        ))
Ji Lin's avatar
Ji Lin committed
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    elif "falcon" in str(module.__class__).lower():         
        # attn out
        # Haotian: TBD: need to handle repeated scales for MQ
        """ 
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attention.query_key_value,
            layers=[module.self_attention.dense],
            inp=input_feat['self_attention.dense'],
        ))
        """
        # fc1, as long as it is scaled, everything is screwed up
        scales_list.append(_auto_get_scale(
            prev_op=module.input_layernorm,
            layers=[module.mlp.dense_h_to_4h, module.self_attention.query_key_value],
            inp=input_feat['self_attention.query_key_value'],
            module2inspect=module,
            kwargs=module_kwargs,
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.mlp.act,
            layers=[module.mlp.dense_4h_to_h],
            inp=input_feat['mlp.dense_4h_to_h'],
        ))
    
Ji Lin's avatar
Ji Lin committed
319
320
321
322
323
324
325
326
327
    else:
        raise NotImplementedError(f"{type(module)} not supported yet!")

    return scales_list

def apply_scale(module, scales_list, input_feat_dict=None):
    for prev_op_name, layer_names, scales in scales_list:
        prev_op = get_op_by_name(module, prev_op_name)
        layers = [get_op_by_name(module, name) for name in layer_names]
328
329
330
331

        prev_op.cuda()
        for layer in layers:
            layer.cuda()
Ji Lin's avatar
Ji Lin committed
332
333
334
335
336
337
        
        if isinstance(prev_op, nn.Linear):
            assert len(layers) == 1
            scale_fc_fc(prev_op, layers[0], scales)
        elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)):
            scale_ln_fcs(prev_op, layers, scales)
338
339
340
341
        elif isinstance(prev_op, nn.GELU) or isinstance(prev_op, BloomGelu):
            new_module = ScaledActivation(prev_op, scales)
            set_op_by_name(module, prev_op_name, new_module)
            scale_gelu_fc(prev_op, layers[0], scales)
Ji Lin's avatar
Ji Lin committed
342
343
344
345
346
347
348
349
        else:
            raise NotImplementedError(
                f"prev_op {type(prev_op)} not supported yet!")
            
        # apply the scaling to input feat if given; prepare it for clipping
        if input_feat_dict is not None:  
            for layer_name in layer_names:
                inp = input_feat_dict[layer_name]
350
351
352
353
354
                inp.div_(scales.view(1, -1).to(inp.device))

        prev_op.cpu()
        for layer in layers:
            layer.cpu()