auto_scale.py 7.56 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn

from transformers.models.opt.modeling_opt import OPTDecoderLayer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm

from ..utils.module import get_op_by_name, get_op_name

__all__ = ["auto_scale_block", "apply_scale"]


@torch.no_grad()
def get_weight_scale(weight, q_group_size=-1):
    org_shape = weight.shape
    if q_group_size > 0:
        weight = weight.view(-1, q_group_size)
    scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
    scale = scale.view(org_shape)
    scale = scale.mean(0)
    return scale


@torch.no_grad()
def get_act_scale(x):
    return x.abs().view(-1, x.shape[-1]).mean(0)


@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
    if not isinstance(fcs, list):
        fcs = [fcs]
    
    scales = scales.to(ln.weight.device)

    ln.weight.div_(scales)
    if hasattr(ln, 'bias') and ln.bias is not None:
        ln.bias.div_(scales)

    for fc in fcs:
        fc.weight.mul_(scales.view(1, -1))

    for p in ln.parameters():
        assert torch.isnan(p).sum() == 0
    for fc in fcs:
        for p in fc.parameters():
            assert torch.isnan(p).sum() == 0


@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
    assert isinstance(fc1, nn.Linear)
    assert isinstance(fc2, nn.Linear)
    assert fc1.out_features == fc2.in_features
    
    scales = scales.to(fc1.weight.device)

    fc1.weight.div_(scales.view(-1, 1))
    if fc1.bias is not None:
        fc1.bias.div_(scales.view(-1))

    fc2.weight.mul_(scales.view(1, -1))

    for p in fc1.parameters():
        assert torch.isnan(p).sum() == 0
    for p in fc2.parameters():
        assert torch.isnan(p).sum() == 0


@torch.no_grad()
def auto_scale_block(module, module_kwargs,
                     w_bit, q_config,
                     input_feat):
    from .quantizer import pseudo_quantize_tensor
    # firstly, get the weight quantize function
    if w_bit is not None:
        def w_quantize_func(p): return pseudo_quantize_tensor(
            p, n_bit=w_bit, **q_config,
        ).detach()
    else:
        def w_quantize_func(p): return p

    if "use_cache" in module_kwargs:
        module_kwargs.pop("use_cache")

    # find the best scale ratio
    def _search_module_scale(block, linears2scale: list, x, kwargs={}):
        # w: co, ci
        # x: n, ci
        x = x.to(next(block.parameters()).device)
        weight = torch.cat([_m.weight for _m in linears2scale], dim=0)
        w_max = get_weight_scale(
            weight, q_group_size=q_config.get("q_group_size", -1))

        with torch.no_grad():
            org_out = block(x, **kwargs)
            if isinstance(org_out, tuple):
                org_out = org_out[0]

        x_max = get_act_scale(x)

        best_error = float('inf')
        best_ratio = -1
        best_scales = None

        n_grid = 20
        history = []

        org_sd = {k: v.cpu() for k, v in block.state_dict().items()}
        for ratio in range(n_grid):
            ratio = ratio * 1 / n_grid
            scales = (x_max.pow(ratio) / w_max.pow(1-ratio)
                      ).clamp(min=1e-4).view(-1)
            scales = scales / (scales.max() * scales.min()).sqrt()
            for fc in linears2scale:
                fc.weight.mul_(scales.view(1, -1))
                fc.weight.data = w_quantize_func(
                    fc.weight.data) / (scales.view(1, -1))
            out = block(x, **kwargs)
            if isinstance(out, tuple):
                out = out[0]

            loss = (org_out - out).float().pow(2).mean().item()  # float prevents overflow
            history.append(loss)
            is_best = loss < best_error
            if is_best:
                best_error = loss
                best_ratio = ratio
                best_scales = scales
            block.load_state_dict(org_sd)
        if best_ratio == -1:
            print(history)
            raise Exception
        # print(best_ratio)
        best_scales = best_scales.view(-1)

        assert torch.isnan(best_scales).sum() == 0, best_scales
        return best_scales.detach()

    def _auto_get_scale(prev_op, layers, inp, module2inspect=None, kwargs={}):
        # module2inspect: if given, we will check the output diff of this module instead of layers
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]

        scales = _search_module_scale(module2inspect, layers, inp, kwargs)
        # prev_op_name, [layer_name], scale
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), scales)

    scales_list = []  # return the searched scales

    if isinstance(module, OPTDecoderLayer):
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn_layer_norm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))
        # attn out
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn.v_proj,
            layers=[module.self_attn.out_proj],
            inp=input_feat['self_attn.out_proj'],
        ))
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.final_layer_norm,
            layers=[module.fc1],
            inp=input_feat['fc1'],
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.fc1,
            layers=[module.fc2],
            inp=input_feat['fc2'],
        ))

    elif isinstance(module, LlamaDecoderLayer):
        # attention input
        scales_list.append(_auto_get_scale(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))
        # attn out
        scales_list.append(_auto_get_scale(
            prev_op=module.self_attn.v_proj,
            layers=[module.self_attn.o_proj],
            inp=input_feat['self_attn.o_proj'],
        ))
        # fc1
        scales_list.append(_auto_get_scale(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))
        # fc2
        scales_list.append(_auto_get_scale(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

    else:
        raise NotImplementedError(f"{type(module)} not supported yet!")

    return scales_list

def apply_scale(module, scales_list, input_feat_dict=None):
    for prev_op_name, layer_names, scales in scales_list:
        prev_op = get_op_by_name(module, prev_op_name)
        layers = [get_op_by_name(module, name) for name in layer_names]
        
        if isinstance(prev_op, nn.Linear):
            assert len(layers) == 1
            scale_fc_fc(prev_op, layers[0], scales)
        elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)):
            scale_ln_fcs(prev_op, layers, scales)
        else:
            raise NotImplementedError(
                f"prev_op {type(prev_op)} not supported yet!")
            
        # apply the scaling to input feat if given; prepare it for clipping
        if input_feat_dict is not None:  
            for layer_name in layer_names:
                inp = input_feat_dict[layer_name]
                inp.div_(scales.view(1, -1).to(inp.device))