base.py 21 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import gc
3
import json
Casper Hansen's avatar
Casper Hansen committed
4
import torch
5
import transformers
Casper Hansen's avatar
Casper Hansen committed
6
import torch.nn as nn
7

Casper Hansen's avatar
Casper Hansen committed
8
from tqdm import tqdm
Casper's avatar
Casper committed
9
from typing import List, Union, Dict
10
from safetensors.torch import save_file
Casper's avatar
Casper committed
11
from typing_extensions import Doc, Annotated
12
from huggingface_hub import snapshot_download
13
from transformers.modeling_utils import shard_checkpoint
14

Casper's avatar
Casper committed
15
16
17
18
19
20
21
22
23
24
25
from awq.modules.linear import (
    WQLinear_GEMM,
    WQLinear_GEMV,
    WQLinear_Marlin,
    WQLinear_Exllama,
    WQLinear_ExllamaV2,
    WQLinear_GEMVFast,
    marlin_post_init,
    exllama_post_init,
    exllamav2_post_init,
)
26
27
28
29
30
from awq.utils.module import (
    get_named_linears,
    set_op_by_name,
    exclude_layers_to_not_quantize,
)
Casper's avatar
Casper committed
31
32
33
34
from transformers import (
    AutoConfig,
    PreTrainedModel,
    PretrainedConfig,
35
36
    AutoProcessor,
    CLIPImageProcessor,
Casper's avatar
Casper committed
37
    PreTrainedTokenizer,
Casper's avatar
Casper committed
38
)
39
40
41
42
from accelerate.big_modeling import (
    init_empty_weights,
    load_checkpoint_and_dispatch,
)
Casper's avatar
Casper committed
43

44
45
46
47
48
from awq.models._config import AwqConfig
from awq.modules.act import ScaledActivation
from awq.quantize.quantizer import AwqQuantizer
from awq.utils.module import get_named_linears, set_op_by_name

49
# Since we support different `AutoModelForxxx` from transformers
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# we need to define a custom mapping dict as below:
TRANSFORMERS_AUTO_MAPPING_DICT = {
    "mpt": "AutoModelForCausalLM",
    "llama": "AutoModelForCausalLM",
    "opt": "AutoModelForCausalLM",
    "RefinedWeb": "AutoModelForCausalLM",
    "RefinedWebModel": "AutoModelForCausalLM",
    "falcon": "AutoModelForCausalLM",
    "bloom": "AutoModelForCausalLM",
    "gptj": "AutoModelForCausalLM",
    "gpt_bigcode": "AutoModelForCausalLM",
    "mistral": "AutoModelForCausalLM",
    "mixtral": "AutoModelForCausalLM",
    "gpt_neox": "AutoModelForCausalLM",
    "aquila": "AutoModelForCausalLM",
    "Yi": "AutoModelForCausalLM",
    "qwen": "AutoModelForCausalLM",
Aoyu's avatar
Aoyu committed
67
    "baichuan": "AutoModelForCausalLM",
68
    "llava": "AutoModelForVision2Seq",
Junyang Lin's avatar
Junyang Lin committed
69
    "qwen2": "AutoModelForCausalLM",
TechxGenus's avatar
TechxGenus committed
70
    "gemma": "AutoModelForCausalLM",
少年's avatar
少年 committed
71
    "starcoder2": "AutoModelForCausalLM",
72
73
}

74

75
class BaseAWQForCausalLM(nn.Module):
76
    def __init__(
Casper's avatar
Casper committed
77
78
79
80
81
82
83
84
85
86
87
88
89
        self,
        model: Annotated[PreTrainedModel, Doc("The pretrained or quantized model.")],
        model_type: Annotated[str, Doc("The model type, found in config.json.")],
        is_quantized: Annotated[
            bool, Doc("Indicates if the current model is quantized.")
        ],
        config: Annotated[PretrainedConfig, Doc("The config of the model.")],
        quant_config: Annotated[
            AwqConfig, Doc("The quantization config of the model.")
        ],
        processor: Annotated[
            AutoProcessor, Doc("An optional processor, e.g. for vision models.")
        ],
90
    ):
Casper's avatar
Casper committed
91
        """The base model for all AutoAWQ models."""
92
        super().__init__()
93
94
95
        self.model: PreTrainedModel = model
        self.model_type: str = model_type
        self.is_quantized: bool = is_quantized
96
        self.search_result = None
Casper's avatar
Casper committed
97
        self.config: PretrainedConfig = config
Casper's avatar
Casper committed
98
        self.quant_config: AwqConfig = quant_config
99
        self.processor: CLIPImageProcessor = processor
100

Casper's avatar
Casper committed
101
102
    def to(self, device: Annotated[str, Doc("The device to move your model to.")]):
        """A utility function for moving the model to a device."""
103
        return self.model.to(device)
104

105
    def forward(self, *args, **kwargs):
Casper's avatar
Casper committed
106
        """A forward function that mimics the torch forward."""
107
        return self.model(*args, **kwargs)
108

Casper Hansen's avatar
Casper Hansen committed
109
    def generate(self, *args, **kwargs):
Casper's avatar
Casper committed
110
        """A generate function that mimics the HF generate function."""
Casper Hansen's avatar
Casper Hansen committed
111
112
        with torch.inference_mode():
            return self.model.generate(*args, **kwargs)
113

Casper Hansen's avatar
Casper Hansen committed
114
    @torch.no_grad()
115
116
    def quantize(
        self,
Casper's avatar
Casper committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        tokenizer: Annotated[
            PreTrainedTokenizer, Doc("The tokenizer to use for quantization.")
        ] = None,
        quant_config: Annotated[
            Dict, Doc("The quantization config you want to use.")
        ] = {},
        calib_data: Annotated[
            Union[str, List[str]],
            Doc(
                "The calibration dataset. Either a string pointing to Huggingface or a list of preloaded examples."
            ),
        ] = "pileval",
        split: Annotated[str, Doc("The split of calib_data.")] = "train",
        text_column: Annotated[str, Doc("The text column of calib_data.")] = "text",
        duo_scaling: Annotated[
            bool, Doc("Whether to scale using both w/x or just x.")
        ] = True,
        export_compatible: Annotated[
            bool,
            Doc(
                "This argument avoids real quantization by only applying the scales without quantizing down to FP16."
            ),
        ] = False,
140
141
142
143
144
145
        apply_clip: Annotated[
            bool,
            Doc(
                "Whether to apply clipping to the model during quantization. Some models may perform better with this set to False."
            ),
        ] = True,
146
    ):
Casper's avatar
Casper committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        """
        The main quantization function that you can use to quantize your model.

        Example:

        ```python
        from awq import AutoAWQForCausalLM
        from transformers import AutoTokenizer

        model_path = "..."
        model = AutoAWQForCausalLM.from_pretrained(model_path)
        tokenizer = AutoTokenizer.from_pretrained(model_path)

        quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
        model.quantize(tokenizer, quant_config)
        ```
        """
Casper's avatar
Casper committed
164
        self.quant_config: AwqConfig = AwqConfig.from_dict(quant_config)
165

Casper's avatar
Casper committed
166
167
168
        if hasattr(self, "modules_to_not_convert"):
            self.quant_config.modules_to_not_convert = self.modules_to_not_convert

169
        self.quantizer = AwqQuantizer(
170
171
172
173
174
            self,
            self.model,
            tokenizer,
            self.quant_config.w_bit,
            self.quant_config.q_group_size,
175
            self.quant_config.zero_point,
176
177
178
179
180
            self.quant_config.version,
            calib_data,
            split,
            text_column,
            duo_scaling,
Casper's avatar
Casper committed
181
            modules_to_not_convert=self.quant_config.modules_to_not_convert,
182
            export_compatible=export_compatible,
183
            apply_clip=apply_clip,
Casper Hansen's avatar
Casper Hansen committed
184
        )
185
        self.quantizer.quantize()
186

Casper Hansen's avatar
Casper Hansen committed
187
        self.is_quantized = True
188

189
190
191
192
193
    @torch.no_grad()
    def pack(self):
        """
        A utility function for the following scenario. Note that save_quantized will
        overwrite existing weights if you use the same quant_path.
194

Casper's avatar
Casper committed
195
196
197
        Example:

        ```python
198
199
200
201
        model.quantize(
            tokenizer,
            quant_config=quant_config,
            export_compatible=True
202
        )
203
204
205
        model.save_quantized(...)  # produces GGUF/other compat weights
        model.pack(...) # makes the model CUDA compat
        model.save_quantized(...)  # produces CUDA compat weights
Casper's avatar
Casper committed
206
        ```
207
208
        """
        self.quantizer.pack()
209

qwopqwop200's avatar
qwopqwop200 committed
210
    @staticmethod
Casper's avatar
Casper committed
211
    def fuse_layers(model):
qwopqwop200's avatar
qwopqwop200 committed
212
        pass
Casper's avatar
Casper committed
213

Casper's avatar
Casper committed
214
215
216
217
218
219
220
221
222
223
    def save_quantized(
        self,
        save_dir: Annotated[str, Doc("The directory to save your model to.")],
        safetensors: Annotated[
            bool, Doc("Whether to save the model as safetensors or torch files.")
        ] = True,
        shard_size: Annotated[
            str, Doc("The shard size for sharding large models into multiple chunks.")
        ] = "5GB",
    ):
224
        save_dir = save_dir[:-1] if save_dir[-1] == "/" else save_dir
225

Casper Hansen's avatar
Casper Hansen committed
226
227
        # Save model
        class EmptyModule(nn.Module):
228
229
230
231
232
            def __init__(self):
                super(EmptyModule, self).__init__()

            def forward(self, x):
                return x
233

Casper's avatar
Casper committed
234
235
        # Save model and config files with empty state dict
        self.model.config.quantization_config = self.quant_config.to_transformers_dict()
236
        self.model.generation_config.do_sample = True
Casper Hansen's avatar
Casper Hansen committed
237
        self.model.save_pretrained(save_dir, state_dict=EmptyModule().state_dict())
238

239
240
241
242
        # Vision transformers have a processor
        if self.processor is not None:
            self.processor.save_pretrained(save_dir)

Casper Hansen's avatar
Casper Hansen committed
243
        # Remove empty state dict
244
245
246
247
        default_paths = [
            f"{save_dir}/model.safetensors",
            f"{save_dir}/pytorch_model.bin",
        ]
248
249
250
        for path in default_paths:
            if os.path.exists(path):
                os.remove(path)
251

Casper Hansen's avatar
Casper Hansen committed
252
        # model_name has no extension, add it when saving state_dict
253
        model_name = "model.safetensors" if safetensors else "pytorch_model.bin"
254

Casper Hansen's avatar
Casper Hansen committed
255
256
        # shard checkpoint into chunks (10GB default)
        shards, index = shard_checkpoint(
257
            self.model.state_dict(), max_shard_size=shard_size, weights_name=model_name
Casper Hansen's avatar
Casper Hansen committed
258
        )
259

Casper Hansen's avatar
Casper Hansen committed
260
261
262
263
        for shard_file, shard in shards.items():
            if safetensors:
                # safetensors must be in the same memory, so we duplicate and use contiguous memory
                shard = {k: v.clone().contiguous() for k, v in shard.items()}
264
265
266
                save_file(
                    shard, os.path.join(save_dir, shard_file), metadata={"format": "pt"}
                )
Casper Hansen's avatar
Casper Hansen committed
267
268
            else:
                torch.save(shard, os.path.join(save_dir, shard_file))
269

Casper Hansen's avatar
Casper Hansen committed
270
271
        # save shard index
        if index is not None:
272
            with open(f"{save_dir}/{model_name}.index.json", "w+") as file:
Casper Hansen's avatar
Casper Hansen committed
273
                file.write(json.dumps(index, indent=4))
274

275
    @classmethod
276
277
    def from_pretrained(
        self,
Casper's avatar
Casper committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        model_path: Annotated[str, Doc("A Huggingface path or local path to a model.")],
        model_type: Annotated[str, Doc("The model type, loaded from config.json.")],
        torch_dtype: Annotated[
            torch.dtype,
            Doc(
                "The dtype to load the model as. May not work with other values than float16."
            ),
        ] = torch.float16,
        trust_remote_code: Annotated[
            bool,
            Doc(
                "Useful for Huggingface repositories that have not been integrated into transformers yet."
            ),
        ] = True,
        safetensors: Annotated[
            bool, Doc("Whether to download/load safetensors instead of torch weights.")
        ] = True,
        device_map: Annotated[
            Union[str, Dict],
            Doc(
                "A device map that will be passed onto the model loading method from transformers."
            ),
        ] = None,
301
302
303
        download_kwargs: Annotated[
            Dict, Doc("Used for configure download model"),
        ] = None,
Casper's avatar
Casper committed
304
305
306
307
308
309
        **model_init_kwargs: Annotated[
            Dict,
            Doc(
                "Additional kwargs that are passed to the model during initialization."
            ),
        ],
310
    ):
Casper's avatar
Casper committed
311
        """A method for initialization of pretrained models, usually in FP16."""
Casper Hansen's avatar
Casper Hansen committed
312
313
        # Get weights path and quant config
        model_weights_path, config, quant_config = self._load_config(
314
315
316
            self, model_path, "", safetensors,
            trust_remote_code=trust_remote_code,
            download_kwargs=download_kwargs
317
        )
Casper's avatar
Casper committed
318

319
320
321
322
323
324
325
326
        target_cls_name = TRANSFORMERS_AUTO_MAPPING_DICT[config.model_type]
        target_cls = getattr(transformers, target_cls_name)

        processor = None
        if target_cls_name == "AutoModelForVision2Seq":
            processor = AutoProcessor.from_pretrained(model_weights_path)
            processor: CLIPImageProcessor = processor.image_processor

Casper Hansen's avatar
Casper Hansen committed
327
        # If not quantized, must load with AutoModelForCausalLM
328
        model = target_cls.from_pretrained(
Casper Hansen's avatar
Casper Hansen committed
329
330
331
332
            model_weights_path,
            trust_remote_code=trust_remote_code,
            torch_dtype=torch_dtype,
            use_safetensors=safetensors,
333
            device_map=device_map,
334
            **model_init_kwargs,
Casper Hansen's avatar
Casper Hansen committed
335
336
337
338
        )

        model.eval()

339
340
341
342
343
344
345
346
        return self(
            model,
            model_type,
            is_quantized=False,
            config=config,
            quant_config=quant_config,
            processor=processor,
        )
Casper Hansen's avatar
Casper Hansen committed
347

348
    @classmethod
349
350
    def from_quantized(
        self,
Casper's avatar
Casper committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        model_path: Annotated[str, Doc("A Huggingface path or local path to a model.")],
        model_type: Annotated[str, Doc("The model type, loaded from config.json.")],
        model_filename: Annotated[
            str, Doc("Load a specific model's filename by specifying this argument.")
        ] = "",
        max_seq_len: Annotated[
            int,
            Doc(
                "The maximum sequence cached sequence length of the model. Larger values may increase loading time and memory usage."
            ),
        ] = None,
        torch_dtype: Annotated[
            torch.dtype,
            Doc(
                "The dtype to load the model as. May not work with other values than float16."
            ),
        ] = torch.float16,
        trust_remote_code: Annotated[
            bool,
            Doc(
                "Useful for Huggingface repositories that have not been integrated into transformers yet."
            ),
        ] = True,
        safetensors: Annotated[
            bool, Doc("Whether to download/load safetensors instead of torch weights.")
        ] = True,
        fuse_layers: Annotated[
            bool,
            Doc(
                "Whether to use fused/optimized combination of layers for increased speed."
            ),
        ] = True,
        use_exllama: Annotated[
            bool, Doc("Whether to map the weights to ExLlamaV1 kernels.")
        ] = False,
        use_exllama_v2: Annotated[
            bool, Doc("Whether to map the weights to ExLlamaV2 kernels.")
        ] = False,
        device_map: Annotated[
            Union[str, Dict],
            Doc(
                "A device map that will be passed onto the model loading method from transformers."
            ),
        ] = "balanced",
        offload_folder: Annotated[
            str,
            Doc("The folder ot offload the model to."),
        ] = None,
399
400
401
        download_kwargs: Annotated[
            Dict, Doc("Used for configure download model"),
        ] = None,
Casper's avatar
Casper committed
402
403
404
405
406
407
        **config_kwargs: Annotated[
            Dict,
            Doc(
                "Additional kwargs that are passed to the config during initialization."
            ),
        ],
408
    ):
Casper's avatar
Casper committed
409
        """A method for initialization of a quantized model, usually in INT4."""
Casper Hansen's avatar
Casper Hansen committed
410
411
        # [STEP 1-2] Load weights path and configs
        model_weights_path, config, quant_config = self._load_config(
412
413
414
415
416
            self,
            model_path,
            model_filename,
            safetensors,
            trust_remote_code,
Casper's avatar
Casper committed
417
            max_seq_len=max_seq_len,
418
            download_kwargs=download_kwargs,
419
            **config_kwargs,
Casper Hansen's avatar
Casper Hansen committed
420
        )
421
422
423

        target_cls_name = TRANSFORMERS_AUTO_MAPPING_DICT[config.model_type]
        target_cls = getattr(transformers, target_cls_name)
424

Casper Hansen's avatar
Casper Hansen committed
425
426
        # [STEP 3] Load model
        with init_empty_weights():
427
428
429
430
431
432
            model = target_cls.from_config(
                config=config,
                torch_dtype=torch_dtype,
                trust_remote_code=trust_remote_code,
            )

Casper Hansen's avatar
Casper Hansen committed
433
        # Prepare WQLinear layers, replace nn.Linear
434
435
436
437
438
439
440
441
442
        self._load_quantized_modules(
            self,
            model,
            quant_config,
            quant_config.version,
            use_exllama=use_exllama,
            use_exllama_v2=use_exllama_v2,
        )

Casper Hansen's avatar
Casper Hansen committed
443
444
        model.tie_weights()

445
446
447
        # loads the weights into modules and distributes
        # across available devices automatically
        load_checkpoint_and_dispatch(
Casper Hansen's avatar
Casper Hansen committed
448
449
            model,
            checkpoint=model_weights_path,
s4rduk4r's avatar
s4rduk4r committed
450
            device_map=device_map,
451
            no_split_module_classes=[self.layer_type],
s4rduk4r's avatar
s4rduk4r committed
452
            offload_folder=offload_folder,
453
            dtype=torch_dtype,
Casper Hansen's avatar
Casper Hansen committed
454
        )
455

Casper Hansen's avatar
Casper Hansen committed
456
        # Dispath to devices
457
        if fuse_layers:
Casper's avatar
Casper committed
458
            self.fuse_layers(model)
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
459

Casper's avatar
Casper committed
460
        if quant_config.version == "marlin":
461
462
463
            model = marlin_post_init(model)

        elif use_exllama:
464
465
466
            # creates q4 handle
            model = exllama_post_init(model)
        elif use_exllama_v2:
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
467
            # creates q4 handle and allocates scratch spaces wrt max_input_len and max_batch_size
468
469
            model = exllamav2_post_init(
                model,
Casper's avatar
Casper committed
470
                max_input_len=max_seq_len or 2048,
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
471
                max_batch_size=int(os.getenv("AWQ_BATCH_SIZE", 1)),
472
473
474
475
476
            )

        return self(
            model,
            model_type,
Casper's avatar
Casper committed
477
            is_quantized=True,
478
479
480
481
            config=config,
            quant_config=quant_config,
            processor=None,
        )
s4rduk4r's avatar
s4rduk4r committed
482

483
484
485
486
487
488
    def _load_config(
        self,
        model_path,
        model_filename,
        safetensors=True,
        trust_remote_code=True,
Casper's avatar
Casper committed
489
        max_seq_len=4096,
490
        download_kwargs=None,
491
492
        **config_kwargs,
    ):
493
        # [STEP 1] Download model if path is not a directory
494
        if not os.path.isdir(model_path):
495
            ignore_patterns = ["*msgpack*", "*h5*", "optimizer.pt"]
496
            if safetensors:
497
                ignore_patterns.extend(["*.pt*", "*.bin*", "consolidated*"])
498
            else:
Casper Hansen's avatar
Casper Hansen committed
499
                ignore_patterns.append("*.safetensors*")
500
501
502
503
504
505
506
507
508
509
510
511
512
            
            if download_kwargs is None:
                download_kwargs = {}
            
            if "ignore_patterns" in download_kwargs:
                download_kwargs_ignore_patterns = download_kwargs.pop("ignore_patterns")

                if isinstance(download_kwargs_ignore_patterns, str):
                    ignore_patterns.append(download_kwargs_ignore_patterns)
                elif isinstance(download_kwargs_ignore_patterns, list):
                    ignore_patterns.extend(download_kwargs_ignore_patterns)

            model_path = snapshot_download(model_path, ignore_patterns=ignore_patterns, **download_kwargs)
513
514
515

        if model_filename != "":
            model_weights_path = model_path + f"/{model_filename}"
516
517
        else:
            model_weights_path = model_path
518

519
        # [STEP 2] Load config and set sequence length
520
        # TODO: Create BaseAWQConfig class
Casper's avatar
Casper committed
521
        quant_config = AwqConfig.from_pretrained(model_path)
522

523
        # Load model config and set max generation length
Casper's avatar
Casper committed
524
        if max_seq_len is None and hasattr(self, "max_seq_len_key"):
525
526
527
            config = AutoConfig.from_pretrained(
                model_path, trust_remote_code=trust_remote_code, **config_kwargs
            )
Casper's avatar
Casper committed
528
            config.max_seq_len = getattr(config, self.max_seq_len_key, 2048)
529
530
            # To add the generate support for Multi-modal models as well
            if hasattr(config, "text_config"):
Casper's avatar
Casper committed
531
532
                config.text_config.max_seq_len = getattr(
                    config, self.max_seq_len_key, 2048
533
                )
534
        else:
Casper's avatar
Casper committed
535
            max_seq_len = 2048 if max_seq_len is None else max_seq_len
536
537
538
            config = AutoConfig.from_pretrained(
                model_path, trust_remote_code=trust_remote_code, **config_kwargs
            )
Casper's avatar
Casper committed
539
            config.max_seq_len = max_seq_len
540

Casper Hansen's avatar
Casper Hansen committed
541
        return model_weights_path, config, quant_config
Casper's avatar
Casper committed
542

543
544
545
    def _load_quantized_modules(
        self, model, quant_config, version, use_exllama, use_exllama_v2
    ):
546
        # Real quantization of weights
547
        assert not (
Casper's avatar
Casper committed
548
            version == "gemv" and (use_exllama or use_exllama_v2)
549
550
        ), "Exllama kernels only support GEMM version."

551
        # Get blocks of model
552
        layers = self.get_model_layers(model)
553

554
555
        for i in tqdm(range(len(layers)), desc="Replacing layers..."):
            layer = layers[i]
556
557

            # Get every linear layer in a block
558
            named_linears = get_named_linears(layer)
559

560
            # Filter out the linear layers we don't want to exclude
561
562
563
            named_linears = exclude_layers_to_not_quantize(
                named_linears, quant_config.modules_to_not_convert
            )
564

565
            # Replace activation functions
566
            self._scale_activations(self, layer)
567

568
            # Replace nn.Linear with WQLinear
569
            for name, module in named_linears.items():
Casper's avatar
Casper committed
570
                if version == "marlin":
571
572
                    q_linear_module = WQLinear_Marlin
                elif use_exllama:
573
574
575
                    q_linear_module = WQLinear_Exllama
                elif use_exllama_v2:
                    q_linear_module = WQLinear_ExllamaV2
Casper's avatar
Casper committed
576
                elif version == "gemm":
Casper Hansen's avatar
Casper Hansen committed
577
                    q_linear_module = WQLinear_GEMM
Casper's avatar
Casper committed
578
                elif version == "gemv":
Casper Hansen's avatar
Casper Hansen committed
579
                    q_linear_module = WQLinear_GEMV
Casper's avatar
Casper committed
580
581
                elif version == "gemv_fast":
                    q_linear_module = WQLinear_GEMVFast
582

Casper Hansen's avatar
Casper Hansen committed
583
                q_linear = q_linear_module.from_linear(
584
                    module, quant_config.w_bit, quant_config.q_group_size, True
Casper Hansen's avatar
Casper Hansen committed
585
                )
586
587
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
588

589
590
            torch.cuda.empty_cache()
            gc.collect()
591

592
    @staticmethod
593
    def _scale_activations(self, layer):
594
        scale_dict = self.get_act_for_scaling(layer)
595

596
597
        if scale_dict["is_scalable"]:
            if not isinstance(scale_dict["scale_layer"], ScaledActivation):
598
                param = next(layer.parameters())
599

600
                # get activation scale
601
602
603
                scale_like = torch.ones(
                    scale_dict["scale_shape"], dtype=param.dtype, device=param.device
                )
604

605
                # scale activation
606
607
                scaled_act = ScaledActivation(scale_dict["scale_layer"], scale_like)
                set_op_by_name(layer, scale_dict["scale_name"], scaled_act)