gemm.py 8.35 KB
Newer Older
1
2
import torch
import torch.nn as nn
Casper's avatar
Casper committed
3
from torch.autograd import Function
4
5
6
7
from awq.utils.utils import get_best_device
from awq.utils.packing_utils import dequantize_gemm

try:
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
8
9
    import awq_ext  # with CUDA kernels (AutoAWQ_kernels)

10
11
12
13
    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False

Casper's avatar
Casper committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Adapted from https://github.com/compressa-ai/AutoAWQ/tree/dev
class WQLinearMMFunction(Function):
    @staticmethod
    # ctx is the first argument to forward
    def forward(
        ctx,
        x,
        qweight,
        qzeros,
        scales,
        w_bit=4,
        group_size=128,
        bias=None,
        out_features=0
    ):
        # The forward pass can use ctx.
        ctx.save_for_backward(x, qweight, qzeros, scales, bias)
        ctx.out_features = out_features

        out_shape = x.shape[:-1] + (out_features, )
        x = x.to(torch.float16)

        if AWQ_INSTALLED:
            FP16_MATMUL_HEURISTIC_CONDITION = x.shape[0]*x.shape[1] >= 1024

            if FP16_MATMUL_HEURISTIC_CONDITION:
                out = awq_ext.dequantize_weights_cuda(
                    qweight,
                    scales,
                    qzeros,
                    0,
                    0,
                    0,
                    False
                )
                out = torch.matmul(x, out)
            else:
                out = awq_ext.gemm_forward_cuda(
                    x.reshape(-1, x.shape[-1]),
                    qweight,
                    scales,
                    qzeros,
                    8
                )
        else:
            out = dequantize_gemm(
                qweight,
                qzeros,
                scales,
                w_bit,
                group_size
            )
            out = torch.matmul(x, out)

        out = out + bias if bias is not None else out
        out = out.reshape(out_shape)

        # always want 3D tensor if tensor is 2D
        if len(out.shape) == 2:
            out = out.unsqueeze(0)
        
        return out

    @staticmethod
    def backward(ctx, grad_output):
        input, qweight, qzeros, scales, bias = ctx.saved_tensors

        weights = awq_ext.dequantize_weights_cuda(
            qweight,
            scales,
            qzeros,
            1,
            0,
            0,
            False
        )

        if ctx.needs_input_grad[0]:
            # 2D matrix multiplication, unsqueeze to 3D
            grad_input = grad_output.squeeze(0).mm(
                weights.transpose(0, 1)
            ).unsqueeze(0)

        return grad_input, None, None, None, None, None, None, None

99
100

class WQLinear_GEMM(nn.Module):
Casper's avatar
Casper committed
101
    def __init__(self, w_bit, group_size, in_features, out_features, bias, dev, training=False):
102
103
104
105
106
107
108
109
110
        super().__init__()

        if w_bit not in [4]:
            raise NotImplementedError("Only 4-bit are supported for now.")

        self.in_features = in_features
        self.out_features = out_features
        self.w_bit = w_bit
        self.group_size = group_size if group_size != -1 else in_features
Casper's avatar
Casper committed
111
        self.training = training
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        # quick sanity check (make sure aligment)
        assert self.in_features % self.group_size == 0
        assert out_features % (32 // self.w_bit) == 0

        self.register_buffer(
            "qweight",
            torch.zeros(
                (in_features, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (in_features // self.group_size, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "scales",
            torch.zeros(
                (in_features // self.group_size, out_features),
                dtype=torch.float16,
                device=dev,
            ),
        )
        if bias:
            self.register_buffer(
                "bias",
                torch.zeros(
                    (out_features),
                    dtype=torch.float16,
                    device=dev,
                ),
            )
        else:
            self.bias = None

    @classmethod
    def from_linear(
        cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
    ):
        awq_linear = cls(
            w_bit,
            group_size,
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            linear.weight.device,
        )
        if init_only:  # just prepare for loading sd
            return awq_linear

        # need scales and zeros info for real quantization
        assert scales is not None and zeros is not None
        scale_zeros = zeros * scales

        awq_linear.scales = scales.clone().half()
        if linear.bias is not None:
            awq_linear.bias = linear.bias.clone().half()

        pack_num = 32 // awq_linear.w_bit

        intweight = []
        for idx in range(awq_linear.in_features):
            intweight.append(
                torch.round(
                    (linear.weight.data[:, idx] + scale_zeros[idx // group_size])
                    / awq_linear.scales[idx // group_size]
                ).to(torch.int)[:, None]
            )
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.t().contiguous()
        intweight = intweight.to(dtype=torch.int32)

        best_device = get_best_device()

        # Avoid: The operator 'aten::__lshift__.Scalar' is not currently implemented for the MPS device
        if "mps" in best_device:
            intweight = intweight.to("cpu")

        qweight = torch.zeros(
            (intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=intweight.device,
        )

        for col in range(intweight.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qweight_col = intweight[:, col * pack_num + order_map[i]]
                qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
        awq_linear.qweight = qweight

        zeros = zeros.to(dtype=torch.int32, device=best_device)

        if "mps" in best_device:
            zeros = zeros.to("cpu")
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        qzeros = torch.zeros(
            (zeros.shape[0], zeros.shape[1] // 32 * awq_linear.w_bit),
            dtype=torch.int32,
            device=zeros.device,
        )

        for col in range(zeros.shape[1] // pack_num):
            if awq_linear.w_bit == 4:
                order_map = [0, 2, 4, 6, 1, 3, 5, 7]
            else:
                raise NotImplementedError("Only 4-bit are supported for now.")
            for i in range(pack_num):
                qzero_col = zeros[:, col * pack_num + order_map[i]]
                qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
        awq_linear.qzeros = qzeros

        return awq_linear

    def forward(self, x):
        out_shape = x.shape[:-1] + (self.out_features,)

        input_dtype = x.dtype
        if input_dtype != torch.float16:
            x = x.half()

Casper's avatar
Casper committed
242
243
244
        if self.training:
            out = WQLinearMMFunction.apply(
                x,
245
246
247
248
                self.qweight,
                self.qzeros,
                self.scales,
                self.w_bit,
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
249
                self.group_size,
Casper's avatar
Casper committed
250
251
                self.bias,
                self.out_features,
252
            )
Casper's avatar
Casper committed
253
254
255
256
257
258
259
260
261
262
263
264
        else:
            with torch.no_grad():
                out = WQLinearMMFunction.apply(
                    x,
                    self.qweight,
                    self.qzeros,
                    self.scales,
                    self.w_bit,
                    self.group_size,
                    self.bias,
                    self.out_features,
                )
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

        if input_dtype != torch.float16:
            out = out.to(dtype=input_dtype)

        out = out + self.bias if self.bias is not None else out
        return out.reshape(out_shape)

    def extra_repr(self) -> str:
        return (
            "in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
                self.in_features,
                self.out_features,
                self.bias is not None,
                self.w_bit,
                self.group_size,
            )
        )