# AutoAWQ
| Roadmap | Examples | Issues: Help Wanted |
AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs. AutoAWQ was created and improved upon from the [original work](https://github.com/mit-han-lab/llm-awq) from MIT.
*Latest News* 🔥
- [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon). LLaMa 7B - up to 180 tokens/s.
- [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
- [2023/08] PyPi package released and AutoModel class available
## Install
Requirements:
- Compute Capability 8.0 (sm80). Ampere and later architectures are supported.
- CUDA Toolkit 11.8 and later.
---
Install:
- Use pip to install awq
```
pip install autoawq
```
### Using conda
CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:
```
conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq
```
### Build source
Build AutoAWQ from scratch
Build time can take 10 minutes. Download your model while you install AutoAWQ.
```
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip install -e .
```
## Supported models
The detailed support list:
| Models | Sizes |
| ---------| ----------------------------|
| LLaMA-2 | 7B/13B/70B |
| LLaMA | 7B/13B/30B/65B |
| Vicuna | 7B/13B |
| MPT | 7B/30B |
| Falcon | 7B/40B |
| OPT | 125m/1.3B/2.7B/6.7B/13B/30B |
| Bloom | 560m/3B/7B/ |
| GPTJ | 6.7B |
## Usage
Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.
Quantization
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4 }
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
```
Inference
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_path = "casperhansen/vicuna-7b-v1.5-awq"
quant_file = "awq_model_w4_g128.pt"
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: {prompt}
ASSISTANT:"""
tokens = tokenizer(
prompt_template.format(prompt="How are you today?"),
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
```
## Benchmarks
| Model | GPU | FP16 latency (ms) | INT4 latency (ms) | Speedup |
| ----------- |:-----:|:-----------------:|:-----------------:|:-------:|
| LLaMA-2-7B | 4090 | 19.97 | 8.66 | 2.31x |
| LLaMA-2-13B | 4090 | OOM | 13.54 | -- |
| Vicuna-7B | 4090 | 19.09 | 8.61 | 2.22x |
| Vicuna-13B | 4090 | OOM | 12.17 | -- |
| MPT-7B | 4090 | 17.09 | 12.58 | 1.36x |
| MPT-30B | 4090 | OOM | 23.54 | -- |
| Falcon-7B | 4090 | 29.91 | 19.84 | 1.51x |
| LLaMA-2-7B | A6000 | 27.14 | 12.44 | 2.18x |
| LLaMA-2-13B | A6000 | 47.28 | 20.28 | 2.33x |
| Vicuna-7B | A6000 | 26.06 | 12.43 | 2.10x |
| Vicuna-13B | A6000 | 44.91 | 17.30 | 2.60x |
| MPT-7B | A6000 | 22.79 | 16.87 | 1.35x |
| MPT-30B | A6000 | OOM | 31.57 | -- |
| Falcon-7B | A6000 | 39.44 | 27.34 | 1.44x |
## Reference
If you find AWQ useful or relevant to your research, you can cite their [paper](https://arxiv.org/abs/2306.00978):
```
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
```