base.py 10.5 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import gc
3
import json
Casper Hansen's avatar
Casper Hansen committed
4
5
import torch
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
6
from tqdm import tqdm
Casper's avatar
Casper committed
7
from typing import List, Union
8
from safetensors.torch import save_file
Casper's avatar
Casper committed
9
from awq.models._config import AwqConfig
10
from awq.modules.act import ScaledActivation
11
from huggingface_hub import snapshot_download
Casper Hansen's avatar
Casper Hansen committed
12
from awq.quantize.quantizer import AwqQuantizer
13
from transformers.modeling_utils import shard_checkpoint
14
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
Casper Hansen's avatar
Casper Hansen committed
15
from awq.utils.module import get_named_linears, set_op_by_name
16
from transformers import AutoModelForCausalLM, AutoConfig, PreTrainedModel
17
18
19
20
21
22
from accelerate.big_modeling import (
    init_empty_weights,
    infer_auto_device_map,
    load_checkpoint_and_dispatch,
)
from accelerate.utils import get_balanced_memory
Casper's avatar
Casper committed
23

24
class BaseAWQForCausalLM(nn.Module):
25
    def __init__(self, model, model_type, is_quantized, quant_config):
26
        super().__init__()
27
28
29
30
        self.model:PreTrainedModel = model
        self.model_type:str = model_type
        self.is_quantized:bool = is_quantized
        self.search_result = None
Casper's avatar
Casper committed
31
        self.quant_config: AwqConfig = quant_config
32
33
34
35
36
37
    
    def to(self, device: str):
        return self.model.to(device)
    
    def forward(self, *args, **kwargs):
        return self.model(*args, **kwargs)
Casper Hansen's avatar
Casper Hansen committed
38
39
40
41
    
    def generate(self, *args, **kwargs):
        with torch.inference_mode():
            return self.model.generate(*args, **kwargs)
42

Casper Hansen's avatar
Casper Hansen committed
43
    @torch.no_grad()
Casper Hansen's avatar
Casper Hansen committed
44
45
    def quantize(self, tokenizer=None, quant_config={},
                       calib_data: Union[str, List[str]]="pileval", 
Casper Hansen's avatar
Casper Hansen committed
46
                       split="train", text_column="text"):
Casper's avatar
Casper committed
47
        self.quant_config: AwqConfig = AwqConfig.from_dict(quant_config)
48

Casper Hansen's avatar
Casper Hansen committed
49
        quantizer = AwqQuantizer(
Casper's avatar
Casper committed
50
51
            self, self.model, tokenizer, self.quant_config.w_bit, self.quant_config.q_group_size,
            self.quant_config.version, calib_data, split, text_column
Casper Hansen's avatar
Casper Hansen committed
52
53
54
        )
        quantizer.quantize()
        self.is_quantized = True
Casper Hansen's avatar
Casper Hansen committed
55
    
qwopqwop200's avatar
qwopqwop200 committed
56
    @staticmethod
Casper's avatar
Casper committed
57
    def fuse_layers(model):
qwopqwop200's avatar
qwopqwop200 committed
58
        pass
Casper's avatar
Casper committed
59

60
    def save_quantized(self, save_dir, safetensors=True, shard_size="10GB"):
Casper Hansen's avatar
Casper Hansen committed
61
        save_dir = save_dir[:-1] if save_dir[-1] == '/' else save_dir
62

Casper Hansen's avatar
Casper Hansen committed
63
64
65
66
        # Save model
        class EmptyModule(nn.Module):
            def __init__(self): super(EmptyModule, self).__init__()
            def forward(self, x): return x
67

Casper's avatar
Casper committed
68
69
        # Save model and config files with empty state dict
        self.model.config.quantization_config = self.quant_config.to_transformers_dict()
Casper Hansen's avatar
Casper Hansen committed
70
        self.model.save_pretrained(save_dir, state_dict=EmptyModule().state_dict())
Casper's avatar
Casper committed
71
        self.quant_config.save_pretrained(save_dir)
72

Casper Hansen's avatar
Casper Hansen committed
73
        # Remove empty state dict
74
75
76
77
        default_paths = [f'{save_dir}/model.safetensors', f'{save_dir}/pytorch_model.bin']
        for path in default_paths:
            if os.path.exists(path):
                os.remove(path)
78

Casper Hansen's avatar
Casper Hansen committed
79
80
        # model_name has no extension, add it when saving state_dict
        model_name = 'model.safetensors' if safetensors else 'pytorch_model.bin'
81

Casper Hansen's avatar
Casper Hansen committed
82
83
84
85
86
87
        # shard checkpoint into chunks (10GB default)
        shards, index = shard_checkpoint(
            self.model.state_dict(), 
            max_shard_size=shard_size, 
            weights_name=model_name
        )
88

Casper Hansen's avatar
Casper Hansen committed
89
90
91
92
93
94
95
        for shard_file, shard in shards.items():
            if safetensors:
                # safetensors must be in the same memory, so we duplicate and use contiguous memory
                shard = {k: v.clone().contiguous() for k, v in shard.items()}
                save_file(shard, os.path.join(save_dir, shard_file), metadata={"format": "pt"})
            else:
                torch.save(shard, os.path.join(save_dir, shard_file))
96

Casper Hansen's avatar
Casper Hansen committed
97
98
99
100
101
        # save shard index
        if index is not None:
            with open(f'{save_dir}/{model_name}.index.json', 'w+') as file:
                file.write(json.dumps(index, indent=4))
        
102
        
103
104
    @classmethod
    def from_pretrained(self, model_path, model_type, torch_dtype: torch.dtype = torch.float16, 
Casper Hansen's avatar
Casper Hansen committed
105
106
107
108
109
                        trust_remote_code=True, safetensors=False, device_map=None,
                        **model_init_kwargs):
        # Get weights path and quant config
        model_weights_path, config, quant_config = self._load_config(
            self, model_path, '', safetensors, trust_remote_code=trust_remote_code
110
        )
Casper's avatar
Casper committed
111

Casper Hansen's avatar
Casper Hansen committed
112
113
114
115
        if device_map is None:
            with init_empty_weights():
                model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code)

116
117
118
119
120
121
122
            # Evenly distribute memory on GPUs
            max_memory = get_balanced_memory(
                model,
                no_split_module_classes=[self.layer_type],
                dtype=torch_dtype
            )

Casper Hansen's avatar
Casper Hansen committed
123
124
125
            # Get device map
            device_map = infer_auto_device_map(
                model,
126
127
                max_memory=max_memory,
                no_split_module_classes=[self.layer_type],
Casper Hansen's avatar
Casper Hansen committed
128
129
130
131
132
133
134
135
136
137
                dtype=torch_dtype
            )
            del model

        # If not quantized, must load with AutoModelForCausalLM
        model = AutoModelForCausalLM.from_pretrained(
            model_weights_path,
            trust_remote_code=trust_remote_code,
            torch_dtype=torch_dtype,
            use_safetensors=safetensors,
138
            device_map=device_map,
Casper Hansen's avatar
Casper Hansen committed
139
140
141
142
143
144
145
            **model_init_kwargs
        )

        model.eval()

        return self(model, model_type, is_quantized=False, quant_config=quant_config)

146
    @classmethod
147
    def from_quantized(self, model_path, model_type, model_filename='', 
Casper Hansen's avatar
Casper Hansen committed
148
                             max_new_tokens=None, torch_dtype=torch.float16, 
149
                             trust_remote_code=True, safetensors=True, is_quantized=True, 
s4rduk4r's avatar
s4rduk4r committed
150
                             fuse_layers=False, version='GEMM',
151
                             device_map="balanced", offload_folder=None,
152
                             **config_kwargs):
Casper Hansen's avatar
Casper Hansen committed
153
154
155
        # [STEP 1-2] Load weights path and configs
        model_weights_path, config, quant_config = self._load_config(
            self, model_path, model_filename, safetensors, version, 
156
157
            trust_remote_code, max_new_tokens=max_new_tokens,
            **config_kwargs
Casper Hansen's avatar
Casper Hansen committed
158
159
160
161
162
163
164
        )
        
        # [STEP 3] Load model
        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code)
        
        # Prepare WQLinear layers, replace nn.Linear
Casper's avatar
Casper committed
165
        self._load_quantized_modules(self, model, quant_config, quant_config.version)
Casper Hansen's avatar
Casper Hansen committed
166
167
168
        
        model.tie_weights()

169
170
171
        # loads the weights into modules and distributes
        # across available devices automatically
        load_checkpoint_and_dispatch(
Casper Hansen's avatar
Casper Hansen committed
172
173
            model,
            checkpoint=model_weights_path,
s4rduk4r's avatar
s4rduk4r committed
174
            device_map=device_map,
175
            no_split_module_classes=[self.layer_type],
s4rduk4r's avatar
s4rduk4r committed
176
            offload_folder=offload_folder,
177
            dtype=torch_dtype,
Casper Hansen's avatar
Casper Hansen committed
178
179
180
        )
        
        # Dispath to devices
181
        if fuse_layers:
Casper's avatar
Casper committed
182
            self.fuse_layers(model)
s4rduk4r's avatar
s4rduk4r committed
183

Casper Hansen's avatar
Casper Hansen committed
184
185
        return self(model, model_type, is_quantized=is_quantized, quant_config=quant_config)

186
    def _load_config(self, model_path, model_filename, safetensors=True, 
187
188
                           version="GEMM", trust_remote_code=True, max_new_tokens=4096,
                           **config_kwargs):
189
        # [STEP 1] Download model if path is not a directory
190
        if not os.path.isdir(model_path):
191
            ignore_patterns = ["*msgpack*", "*h5*", "optimizer.pt"]
192
            if safetensors:
Casper Hansen's avatar
Casper Hansen committed
193
                ignore_patterns.extend(["*.pt*", "*.bin*"])
194
            else:
Casper Hansen's avatar
Casper Hansen committed
195
196
                ignore_patterns.append("*.safetensors*")
            
197
            model_path = snapshot_download(model_path, ignore_patterns=ignore_patterns)
198
        
199
200
201
202
        if model_filename != '':
            model_weights_path = model_path + f'/{model_filename}'
        else:
            model_weights_path = model_path
203

204
        # [STEP 2] Load config and set sequence length
205
        # TODO: Create BaseAWQConfig class
Casper's avatar
Casper committed
206
        quant_config = AwqConfig.from_pretrained(model_path)
207
        
208
209
        # Load model config and set max generation length
        if max_new_tokens is None and hasattr(self, 'max_new_tokens_key'):
210
            config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code, **config_kwargs)
211
212
213
            config.max_new_tokens = getattr(config, self.max_new_tokens_key)
        else:
            max_new_tokens = 2048 if max_new_tokens is None else max_new_tokens
214
            config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code, **config_kwargs)
215
216
            config.max_new_tokens = max_new_tokens
        
Casper Hansen's avatar
Casper Hansen committed
217
        return model_weights_path, config, quant_config
Casper's avatar
Casper committed
218

Casper Hansen's avatar
Casper Hansen committed
219
    def _load_quantized_modules(self, model, quant_config, version):
220
        # Real quantization of weights
Casper's avatar
Casper committed
221
        assert quant_config.zero_point, "We only support zero_point quantization now."
222
223
        
        # Get blocks of model
224
        layers = self.get_model_layers(model)
225

226
227
        for i in tqdm(range(len(layers)), desc="Replacing layers..."):
            layer = layers[i]
228
229

            # Get every linear layer in a block
230
            named_linears = get_named_linears(layer)
231
232

            # Replace activation functions
233
            self._scale_activations(self, layer)
234

235
            # Replace nn.Linear with WQLinear
236
            for name, module in named_linears.items():
Casper Hansen's avatar
Casper Hansen committed
237
238
239
240
241
242
                if version == 'GEMM':
                    q_linear_module = WQLinear_GEMM
                elif version == 'GEMV':
                    q_linear_module = WQLinear_GEMV
                
                q_linear = q_linear_module.from_linear(
243
                    module,
Casper's avatar
Casper committed
244
245
                    quant_config.w_bit,
                    quant_config.q_group_size,
Casper Hansen's avatar
Casper Hansen committed
246
247
                    True
                )
248
249
250
251
252
253
                q_linear.to(next(layer.parameters()).device)
                set_op_by_name(layer, name, q_linear)
            
            torch.cuda.empty_cache()
            gc.collect()
    
254
    @staticmethod
255
    def _scale_activations(self, layer):
256
        scale_dict = self.get_act_for_scaling(layer)
257

258
259
260
        if scale_dict['is_scalable']:
            if not isinstance(scale_dict['scale_layer'], ScaledActivation):
                param = next(layer.parameters())
261

262
263
                # get activation scale
                scale_like = torch.ones(scale_dict['scale_shape'], dtype=param.dtype, device=param.device)
264

265
266
                # scale activation
                scaled_act = ScaledActivation(scale_dict['scale_layer'], scale_like)
Casper's avatar
Casper committed
267
                set_op_by_name(layer, scale_dict['scale_name'], scaled_act)