multi_tensor_adam.cu 4.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

typedef enum{
17
18
  ADAM_MODE_0   =0, // L2 regularization mode
  ADAM_MODE_1   =1  // Decoupled weight decay mode(AdamW)
19
20
} adamMode_t;

21
using MATH_T = float;
22
23
24
25
26
27
28

template<typename T>
struct AdamFunctor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
29
    TensorListMetadata<4>* tl,
30
31
    const float beta1,
    const float beta2,
32
33
34
35
    const float beta1_correction,
    const float beta2_correction,
    const float epsilon,
    const float lr,
36
37
38
39
40
41
42
    adamMode_t mode,
    const float decay)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

43
    int tensor_loc = tl->block_to_tensor[blockIdx.x];
44
45

    // potentially use to pass in list of scalar
46
    // int tensor_num = tl->start_tensor_this_launch + tensor_loc;
47

48
49
    int chunk_idx = tl->block_to_chunk[blockIdx.x];
    int n = tl->sizes[tensor_loc];
50

51
    T* g = (T*)tl->addresses[0][tensor_loc];
52
53
    g += chunk_idx*chunk_size;

54
    T* p = (T*)tl->addresses[1][tensor_loc];
55
56
    p += chunk_idx*chunk_size;

57
    T* m = (T*)tl->addresses[2][tensor_loc];
58
59
    m += chunk_idx*chunk_size;

60
    T* v = (T*)tl->addresses[3][tensor_loc];
61
62
63
64
65
66
67
68
69
    v += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    // see note in multi_tensor_scale_kernel.cu
    for(int i_start = 0;
            i_start < n && i_start < chunk_size;
            i_start += blockDim.x*ILP)
    {
70
71
72
73
      MATH_T r_g[ILP];
      MATH_T r_p[ILP];
      MATH_T r_m[ILP];
      MATH_T r_v[ILP];
74
75
76
77
78
79
80
81
82
83
84
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          r_g[ii] = g[i];
          r_p[ii] = p[i];
          r_m[ii] = m[i];
          r_v[ii] = v[i];
        } else {
85
86
87
88
          r_g[ii] = MATH_T(0);
          r_p[ii] = MATH_T(0);
          r_m[ii] = MATH_T(0);
          r_v[ii] = MATH_T(0);
89
90
91
92
93
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        if(mode == ADAM_MODE_0) { // L2
          r_g[ii] = r_g[ii] + (decay * r_p[ii]);
          r_m[ii] = beta1 * r_m[ii] + (1-beta1) * r_g[ii];
          r_v[ii] = beta2 * r_v[ii] + (1-beta2) * r_g[ii] * r_g[ii];
          MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
          MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
          MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
          MATH_T update = next_m_unbiased / denom;
          r_p[ii] = r_p[ii] - (lr * update);
        }
        else { // weight decay
          r_m[ii] = beta1 * r_m[ii] + (1-beta1) * r_g[ii];
          r_v[ii] = beta2 * r_v[ii] + (1-beta2) * r_g[ii] * r_g[ii];
          MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
          MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
          MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
          MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
          r_p[ii] = r_p[ii] - (lr * update);
        }
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          p[i] = r_p[ii];
          m[i] = r_m[ii];
          v[i] = r_v[ii];
        }
      }
    }
  }
};

void multi_tensor_adam_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
138
  const int mode,
139
140
141
142
143
  const int bias_correction,
  const float weight_decay)
{
  using namespace at;

144
145
  // Handle bias correction mode
  float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
146
  if (bias_correction == 1) {
147
148
    bias_correction1 = 1 - std::pow(beta1, step);
    bias_correction2 = 1 - std::pow(beta2, step);
149
150
151
  }

  // Assume single type across p,g,m1,m2 now
152
  DISPATCH_DOUBLE_FLOAT_AND_HALF_AND_BFLOAT16(
153
154
155
156
157
158
159
160
161
    tensor_lists[0][0].scalar_type(), 0, "adam",
    multi_tensor_apply<4>(
      BLOCK_SIZE,
      chunk_size,
      noop_flag,
      tensor_lists,
      AdamFunctor<scalar_t_0>(),
      beta1,
      beta2,
162
163
      bias_correction1,
      bias_correction2,
164
      epsilon,
165
166
      lr,
      (adamMode_t) mode,
167
168
169
170
171
      weight_decay); )

  AT_CUDA_CHECK(cudaGetLastError());

}