multi_tensor_adam.cu 3.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

typedef enum{
  ADAM_MODE_0   =0, // eps under square root
  ADAM_MODE_1   =1  // eps outside square root
} adamMode_t;


template<typename T>
struct AdamFunctor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<4>& tl,
    const float beta1,
    const float beta2,
    const float eps,
    const float step_size,
    adamMode_t mode,
    const float decay)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];

    // potentially use to pass in list of scalar
    // int tensor_num = tl.start_tensor_this_launch + tensor_loc;

    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    T* g = (T*)tl.addresses[0][tensor_loc];
    g += chunk_idx*chunk_size;

    T* p = (T*)tl.addresses[1][tensor_loc];
    p += chunk_idx*chunk_size;

    T* m = (T*)tl.addresses[2][tensor_loc];
    m += chunk_idx*chunk_size;

    T* v = (T*)tl.addresses[3][tensor_loc];
    v += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    // see note in multi_tensor_scale_kernel.cu
    for(int i_start = 0;
            i_start < n && i_start < chunk_size;
            i_start += blockDim.x*ILP)
    {
      T r_g[ILP];
      T r_p[ILP];
      T r_m[ILP];
      T r_v[ILP];
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          r_g[ii] = g[i];
          r_p[ii] = p[i];
          r_m[ii] = m[i];
          r_v[ii] = v[i];
        } else {
          r_g[ii] = T(0);
          r_p[ii] = T(0);
          r_m[ii] = T(0);
          r_v[ii] = T(0);
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        r_m[ii] = beta1 * r_m[ii] + (1-beta1) * r_g[ii];
        r_v[ii] = beta2 * r_v[ii] + (1-beta2) * r_g[ii] * r_g[ii];
        T denom;
        if (mode == ADAM_MODE_0)
          denom = sqrtf(r_v[ii] + eps);
        else // Mode 1
          denom = sqrtf(r_v[ii]) + eps;
        T update = (r_m[ii] / denom) + (decay * r_p[ii]);
        r_p[ii] = r_p[ii] - (step_size * update);
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          p[i] = r_p[ii];
          m[i] = r_m[ii];
          v[i] = r_v[ii];
        }
      }
    }
  }
};

void multi_tensor_adam_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
  const int eps_mode,
  const int bias_correction,
  const float weight_decay)
{
  using namespace at;

  float step_size = 0;
  if (bias_correction == 1) {
    const float bias_correction1 = 1 - std::pow(beta1, step);
    const float bias_correction2 = 1 - std::pow(beta2, step);
    step_size = lr * std::sqrt(bias_correction2)/bias_correction1;
  }
  else {
    step_size = lr;
  }

  // Assume single type across p,g,m1,m2 now
  DISPATCH_DOUBLE_FLOAT_AND_HALF(
    tensor_lists[0][0].scalar_type(), 0, "adam",
    multi_tensor_apply<4>(
      BLOCK_SIZE,
      chunk_size,
      noop_flag,
      tensor_lists,
      AdamFunctor<scalar_t_0>(),
      beta1,
      beta2,
      epsilon,
      step_size,
      (adamMode_t) eps_mode,
      weight_decay); )

  AT_CUDA_CHECK(cudaGetLastError());

}