multi_tensor_l2norm_kernel.cu 12.1 KB
Newer Older
Michael Carilli's avatar
Michael Carilli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

16
17
18
19
20
21
22
23
24
25
26
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
  return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}

template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}

Michael Carilli's avatar
Michael Carilli committed
27
28
29
template<typename x_t>
struct L2NormFunctor
{
30
  __device__ __forceinline__ void operator()(
Michael Carilli's avatar
Michael Carilli committed
31
32
33
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
34
35
36
37
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
Michael Carilli's avatar
Michael Carilli committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

52
    __shared__ float s_vals[512];
Michael Carilli's avatar
Michael Carilli committed
53

54
    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
55
    x_t r_x[ILP];
56
    for(int i = 0; i < ILP; i++)
57
    {
58
      vals[i] = 0.f;
59
60
      r_x[i] = 0;
    }
61

62
63
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x))
Michael Carilli's avatar
Michael Carilli committed
64
    {
65
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
66
      {
67
68
69
70
        // load
        load_store(r_x, x, 0 , i_start);
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
71
        {
72
          float next = static_cast<float>(r_x[ii]);
73
74
75
          vals[ii] += next*next;
        }
      }
Michael Carilli's avatar
Michael Carilli committed
76
    }
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    else
    {
      for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
      {
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            float next = static_cast<float>(x[i]);
            vals[ii] += next*next;
          }
        }
      }
    }
Michael Carilli's avatar
Michael Carilli committed
93

94
95
96
97
98
    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val += vals[i];

    float final = reduce_block_into_lanes(s_vals, val);
Michael Carilli's avatar
Michael Carilli committed
99
100
101
102
103
104

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] += final;
105
106
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
Michael Carilli's avatar
Michael Carilli committed
107
108
109
110
    }
  }
};

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Probably better to template, but since we are not likely to support other norm
template<typename x_t>
struct MaxNormFunctor
{
  __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    __shared__ float s_vals[512];

    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
140
    x_t r_x[ILP];
141
    for(int i = 0; i < ILP; i++)
142
    {
143
      vals[i] = 0.f;
144
145
      r_x[i] = 0;
    }
146

147
148
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x))
149
    {
150
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
151
      {
152
153
154
155
        // load
        load_store(r_x, x, 0 , i_start);
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
156
        {
157
          float next = static_cast<float>(r_x[ii]);
158
159
160
161
          vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
        }
      }
    }
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    else
    {
      for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
      {
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            float next = static_cast<float>(x[i]);
            vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
          }
        }
      }
    }
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val = fmaxf(fabsf(val), fabsf(vals[i]));

    float final = reduce_block_into_lanes_max_op(s_vals, val);

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final));
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
    }
  }
};

196
197
198
199
200
201
202
203

__global__ void cleanup(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor)
204
205
206
{
  __shared__ float vals[512];

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    float final = reduce_block_into_lanes(vals, val);

    if(threadIdx.x == 0)
      *ret = sqrt(final);
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    float val = 0;
    for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
      val += output_this_tensor[i];
226

227
    float final = reduce_block_into_lanes(vals, val);
228

229
230
231
    if(threadIdx.x == 0)
      ret_per_tensor[blockIdx.x] = sqrt(final);
  }
232
233
}

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
__global__ void cleanup_v2(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor,
  int norm_type,
  float alpha,
  float beta)
{
  __shared__ float vals[512];

  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    if (norm_type == 0) {
      float final = reduce_block_into_lanes_max_op(vals, val);
      if(threadIdx.x == 0)
        *ret = alpha * (*ret) + beta * final;
    }
    else {
      float final = reduce_block_into_lanes(vals, val);
      if(threadIdx.x == 0)
        *ret = sqrt(alpha * (*ret) * (*ret) + beta * final);
    }
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    if (norm_type == 0) {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val = fmaxf(fabsf(val), fabsf(output_this_tensor[i]));

      float final = reduce_block_into_lanes_max_op(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = alpha * ret_per_tensor[blockIdx.x] + beta * final;
    }
    else {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val += output_this_tensor[i];

      float final = reduce_block_into_lanes(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * ret_per_tensor[blockIdx.x] + beta * final);
    }
  }
}
291
292

std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
Michael Carilli's avatar
Michael Carilli committed
293
294
  int chunk_size,
  at::Tensor noop_flag,
295
296
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python)
Michael Carilli's avatar
Michael Carilli committed
297
{
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false;

  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
  auto output = at::zeros({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  if(per_tensor)
  {
    for(int t = 0; t < ntensors; t++)
    {
      int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
      if(max_chunks_this_tensor > max_chunks_per_tensor)
        max_chunks_per_tensor = max_chunks_this_tensor;
    }
    output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);
    ret_per_tensor = at::empty({ntensors}, float_options);
  }
  else
  {
    ret_per_tensor = at::empty({0}, float_options);
  }
Michael Carilli's avatar
Michael Carilli committed
324

325
  DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
Michael Carilli's avatar
Michael Carilli committed
326
327
328
329
330
331
    multi_tensor_apply<1>(
      BLOCK_SIZE,
      chunk_size,
      noop_flag,
      tensor_lists,
      L2NormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
332
333
      output.DATA_PTR<float>(),
      per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
334
335
      per_tensor,
      max_chunks_per_tensor);)
Michael Carilli's avatar
Michael Carilli committed
336
337
338
339
340

  AT_CUDA_CHECK(cudaGetLastError());

  // AT_CUDA_CHECK(cudaDeviceSynchronize());

341
  // This involves one more small kernel launches, but will be negligible end to end.
Michael Carilli's avatar
Michael Carilli committed
342
343
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
344
345
  auto ret = at::empty({1}, output.options());
  auto stream = at::cuda::getCurrentCUDAStream();
346
  cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>(
mcarilli's avatar
mcarilli committed
347
348
349
350
    output.DATA_PTR<float>(),
    per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
    ret.DATA_PTR<float>(),
    per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr,
351
352
353
354
    per_tensor,
    max_chunks_per_tensor);

  return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor);
Michael Carilli's avatar
Michael Carilli committed
355
}
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393


// Compute and update grad norm
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
// L-2: gn = sqrt(a * gn^2 + b * n^2)
// L-inf: gn = a * gn + b * n
void multi_tensor_norm_out_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::Tensor out,
  const float alpha,
  const float beta,
  const int norm_type)
{
  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);

  // we don't need global thus uses empty here
  auto output = at::empty({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  for(int t = 0; t < ntensors; t++)
  {
    int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
    if(max_chunks_this_tensor > max_chunks_per_tensor)
      max_chunks_per_tensor = max_chunks_this_tensor;
  }

  // Although it is single write then read, still need to be zero
  // Since tailing element also participate cleanup
  output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);

  if (norm_type == 0) {
394
    DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(
395
396
397
398
399
400
401
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        MaxNormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
402
403
        output.DATA_PTR<float>(),
        output_per_tensor.DATA_PTR<float>(),
404
405
406
407
        true,
        max_chunks_per_tensor);)
  }
  else {
408
    DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(
409
410
411
412
413
414
415
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        L2NormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
416
417
        output.DATA_PTR<float>(),
        output_per_tensor.DATA_PTR<float>(),
418
419
420
421
422
423
424
425
426
427
428
429
430
        true,
        max_chunks_per_tensor);)
  }
  AT_CUDA_CHECK(cudaGetLastError());

  // AT_CUDA_CHECK(cudaDeviceSynchronize());

  // This involves one more small kernel launches, but will be negligible end to end.
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
  auto ret = at::empty({1}, output.options());
  auto stream = at::cuda::getCurrentCUDAStream();
  cleanup_v2<<<ntensors, 512, 0, stream>>>(
mcarilli's avatar
mcarilli committed
431
432
433
434
    output.DATA_PTR<float>(),
    output_per_tensor.DATA_PTR<float>(),
    ret.DATA_PTR<float>(),
    out.DATA_PTR<float>(),
435
436
437
438
439
440
441
442
    true,
    max_chunks_per_tensor,
    norm_type,
    alpha,
    beta);

  return ;
}