multi_tensor_l2norm_kernel.cu 10.5 KB
Newer Older
Michael Carilli's avatar
Michael Carilli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

template<typename x_t>
struct L2NormFunctor
{
19
  __device__ __forceinline__ void operator()(
Michael Carilli's avatar
Michael Carilli committed
20
21
22
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
23
24
25
26
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
Michael Carilli's avatar
Michael Carilli committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

41
    __shared__ float s_vals[512];
Michael Carilli's avatar
Michael Carilli committed
42

43
44
45
46
47
    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
    for(int i = 0; i < ILP; i++)
      vals[i] = 0.f;

    for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
Michael Carilli's avatar
Michael Carilli committed
48
    {
49
50
51
52
53
54
55
56
57
58
      #pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          float next = static_cast<float>(x[i]);
          vals[ii] += next*next;
        }
      }
Michael Carilli's avatar
Michael Carilli committed
59
60
    }

61
62
63
64
65
    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val += vals[i];

    float final = reduce_block_into_lanes(s_vals, val);
Michael Carilli's avatar
Michael Carilli committed
66
67
68
69
70
71

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] += final;
72
73
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
Michael Carilli's avatar
Michael Carilli committed
74
75
76
77
    }
  }
};

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Probably better to template, but since we are not likely to support other norm
template<typename x_t>
struct MaxNormFunctor
{
  __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    __shared__ float s_vals[512];

    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
    for(int i = 0; i < ILP; i++)
      vals[i] = 0.f;

    for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
    {
      #pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          float next = static_cast<float>(x[i]);
          vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
        }
      }
    }

    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val = fmaxf(fabsf(val), fabsf(vals[i]));

    float final = reduce_block_into_lanes_max_op(s_vals, val);

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final));
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
    }
  }
};

141
142
143
144
145
146
147
148

__global__ void cleanup(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor)
149
150
151
{
  __shared__ float vals[512];

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    float final = reduce_block_into_lanes(vals, val);

    if(threadIdx.x == 0)
      *ret = sqrt(final);
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    float val = 0;
    for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
      val += output_this_tensor[i];
171

172
    float final = reduce_block_into_lanes(vals, val);
173

174
175
176
    if(threadIdx.x == 0)
      ret_per_tensor[blockIdx.x] = sqrt(final);
  }
177
178
}

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
__global__ void cleanup_v2(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor,
  int norm_type,
  float alpha,
  float beta)
{
  __shared__ float vals[512];

  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    if (norm_type == 0) {
      float final = reduce_block_into_lanes_max_op(vals, val);
      if(threadIdx.x == 0)
        *ret = alpha * (*ret) + beta * final;
    }
    else {
      float final = reduce_block_into_lanes(vals, val);
      if(threadIdx.x == 0)
        *ret = sqrt(alpha * (*ret) * (*ret) + beta * final);
    }
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    if (norm_type == 0) {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val = fmaxf(fabsf(val), fabsf(output_this_tensor[i]));

      float final = reduce_block_into_lanes_max_op(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = alpha * ret_per_tensor[blockIdx.x] + beta * final;
    }
    else {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val += output_this_tensor[i];

      float final = reduce_block_into_lanes(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * ret_per_tensor[blockIdx.x] + beta * final);
    }
  }
}
236
237

std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
Michael Carilli's avatar
Michael Carilli committed
238
239
  int chunk_size,
  at::Tensor noop_flag,
240
241
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python)
Michael Carilli's avatar
Michael Carilli committed
242
{
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false;

  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
  auto output = at::zeros({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  if(per_tensor)
  {
    for(int t = 0; t < ntensors; t++)
    {
      int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
      if(max_chunks_this_tensor > max_chunks_per_tensor)
        max_chunks_per_tensor = max_chunks_this_tensor;
    }
    output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);
    ret_per_tensor = at::empty({ntensors}, float_options);
  }
  else
  {
    ret_per_tensor = at::empty({0}, float_options);
  }
Michael Carilli's avatar
Michael Carilli committed
269
270
271
272
273
274
275
276

  DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
    multi_tensor_apply<1>(
      BLOCK_SIZE,
      chunk_size,
      noop_flag,
      tensor_lists,
      L2NormFunctor<scalar_t_0>(),
277
278
279
280
      output.data<float>(),
      per_tensor ? output_per_tensor.data<float>() : nullptr,
      per_tensor,
      max_chunks_per_tensor);)
Michael Carilli's avatar
Michael Carilli committed
281
282
283
284
285

  AT_CUDA_CHECK(cudaGetLastError());

  // AT_CUDA_CHECK(cudaDeviceSynchronize());

286
  // This involves one more small kernel launches, but will be negligible end to end.
Michael Carilli's avatar
Michael Carilli committed
287
288
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
289
290
  auto ret = at::empty({1}, output.options());
  auto stream = at::cuda::getCurrentCUDAStream();
291
292
293
294
295
296
297
298
299
  cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>(
    output.data<float>(),
    per_tensor ? output_per_tensor.data<float>() : nullptr,
    ret.data<float>(),
    per_tensor ? ret_per_tensor.data<float>() : nullptr,
    per_tensor,
    max_chunks_per_tensor);

  return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor);
Michael Carilli's avatar
Michael Carilli committed
300
}
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387


// Compute and update grad norm
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
// L-2: gn = sqrt(a * gn^2 + b * n^2)
// L-inf: gn = a * gn + b * n
void multi_tensor_norm_out_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::Tensor out,
  const float alpha,
  const float beta,
  const int norm_type)
{
  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);

  // we don't need global thus uses empty here
  auto output = at::empty({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  for(int t = 0; t < ntensors; t++)
  {
    int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
    if(max_chunks_this_tensor > max_chunks_per_tensor)
      max_chunks_per_tensor = max_chunks_this_tensor;
  }

  // Although it is single write then read, still need to be zero
  // Since tailing element also participate cleanup
  output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);

  if (norm_type == 0) {
    DISPATCH_FLOAT_AND_HALF(
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        MaxNormFunctor<scalar_t_0>(),
        output.data<float>(),
        output_per_tensor.data<float>(),
        true,
        max_chunks_per_tensor);)
  }
  else {
    DISPATCH_FLOAT_AND_HALF(
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        L2NormFunctor<scalar_t_0>(),
        output.data<float>(),
        output_per_tensor.data<float>(),
        true,
        max_chunks_per_tensor);)
  }
  AT_CUDA_CHECK(cudaGetLastError());

  // AT_CUDA_CHECK(cudaDeviceSynchronize());

  // This involves one more small kernel launches, but will be negligible end to end.
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
  auto ret = at::empty({1}, output.options());
  auto stream = at::cuda::getCurrentCUDAStream();
  cleanup_v2<<<ntensors, 512, 0, stream>>>(
    output.data<float>(),
    output_per_tensor.data<float>(),
    ret.data<float>(),
    out.data<float>(),
    true,
    max_chunks_per_tensor,
    norm_type,
    alpha,
    beta);

  return ;
}