multi_tensor_l2norm_kernel.cu 12.3 KB
Newer Older
Michael Carilli's avatar
Michael Carilli committed
1
2
3
4
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
5
#include <c10/cuda/CUDAGuard.h>
Michael Carilli's avatar
Michael Carilli committed
6
7
8
9
10
11
12
13
14
15
16
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

17
18
19
20
21
22
23
24
25
26
27
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
  return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}

template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}

Michael Carilli's avatar
Michael Carilli committed
28
29
30
template<typename x_t>
struct L2NormFunctor
{
31
  __device__ __forceinline__ void operator()(
Michael Carilli's avatar
Michael Carilli committed
32
33
34
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
35
36
37
38
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
Michael Carilli's avatar
Michael Carilli committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

53
    __shared__ float s_vals[512];
Michael Carilli's avatar
Michael Carilli committed
54

55
    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
56
    x_t r_x[ILP];
57
    for(int i = 0; i < ILP; i++)
58
    {
59
      vals[i] = 0.f;
60
61
      r_x[i] = 0;
    }
62

63
64
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x))
Michael Carilli's avatar
Michael Carilli committed
65
    {
66
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
67
      {
68
69
70
71
        // load
        load_store(r_x, x, 0 , i_start);
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
72
        {
73
          float next = static_cast<float>(r_x[ii]);
74
75
76
          vals[ii] += next*next;
        }
      }
Michael Carilli's avatar
Michael Carilli committed
77
    }
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    else
    {
      for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
      {
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            float next = static_cast<float>(x[i]);
            vals[ii] += next*next;
          }
        }
      }
    }
Michael Carilli's avatar
Michael Carilli committed
94

95
96
97
98
99
    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val += vals[i];

    float final = reduce_block_into_lanes(s_vals, val);
Michael Carilli's avatar
Michael Carilli committed
100
101
102
103
104
105

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] += final;
106
107
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
Michael Carilli's avatar
Michael Carilli committed
108
109
110
111
    }
  }
};

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Probably better to template, but since we are not likely to support other norm
template<typename x_t>
struct MaxNormFunctor
{
  __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<1>& tl,
    float* output,
    float* output_per_tensor,
    bool per_tensor,
    int max_chunks_per_tensor)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    x_t* x = (x_t*)tl.addresses[0][tensor_loc];
    x += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    __shared__ float s_vals[512];

    float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
141
    x_t r_x[ILP];
142
    for(int i = 0; i < ILP; i++)
143
    {
144
      vals[i] = 0.f;
145
146
      r_x[i] = 0;
    }
147

148
149
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x))
150
    {
151
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
152
      {
153
154
155
156
        // load
        load_store(r_x, x, 0 , i_start);
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
157
        {
158
          float next = static_cast<float>(r_x[ii]);
159
160
161
162
          vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
        }
      }
    }
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    else
    {
      for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
      {
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            float next = static_cast<float>(x[i]);
            vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
          }
        }
      }
    }
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    float val = 0.f;
    for(int i = 0; i < ILP; i++)
        val = fmaxf(fabsf(val), fabsf(vals[i]));

    float final = reduce_block_into_lanes_max_op(s_vals, val);

    if(threadIdx.x == 0)
    {
      if(!isfinite(final))
        *noop_gmem = 1; // Blindly fire off a write.  These will race but that's ok.
      output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final));
      if(per_tensor)
        output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
    }
  }
};

197
198
199
200
201
202
203
204

__global__ void cleanup(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor)
205
206
207
{
  __shared__ float vals[512];

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    float final = reduce_block_into_lanes(vals, val);

    if(threadIdx.x == 0)
      *ret = sqrt(final);
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    float val = 0;
    for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
      val += output_this_tensor[i];
227

228
    float final = reduce_block_into_lanes(vals, val);
229

230
231
232
    if(threadIdx.x == 0)
      ret_per_tensor[blockIdx.x] = sqrt(final);
  }
233
234
}

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
__global__ void cleanup_v2(
  float* output,
  float* output_per_tensor,
  float* ret,
  float* ret_per_tensor,
  bool per_tensor,
  int max_chunks_per_tensor,
  int norm_type,
  float alpha,
  float beta)
{
  __shared__ float vals[512];

  if(blockIdx.x == 0)
  {
    float val = 0;
    if(threadIdx.x < 320)
      val = output[threadIdx.x];

    if (norm_type == 0) {
      float final = reduce_block_into_lanes_max_op(vals, val);
      if(threadIdx.x == 0)
        *ret = alpha * (*ret) + beta * final;
    }
    else {
      float final = reduce_block_into_lanes(vals, val);
      if(threadIdx.x == 0)
        *ret = sqrt(alpha * (*ret) * (*ret) + beta * final);
    }
  }

  if(per_tensor)
  {
    float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;

    if (norm_type == 0) {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val = fmaxf(fabsf(val), fabsf(output_this_tensor[i]));

      float final = reduce_block_into_lanes_max_op(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = alpha * ret_per_tensor[blockIdx.x] + beta * final;
    }
    else {
      float val = 0;
      for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
        val += output_this_tensor[i];

      float final = reduce_block_into_lanes(vals, val);

      if(threadIdx.x == 0)
        ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * ret_per_tensor[blockIdx.x] + beta * final);
    }
  }
}
292
293

std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
Michael Carilli's avatar
Michael Carilli committed
294
295
  int chunk_size,
  at::Tensor noop_flag,
296
297
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python)
Michael Carilli's avatar
Michael Carilli committed
298
{
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false;

  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
  auto output = at::zeros({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  if(per_tensor)
  {
    for(int t = 0; t < ntensors; t++)
    {
      int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
      if(max_chunks_this_tensor > max_chunks_per_tensor)
        max_chunks_per_tensor = max_chunks_this_tensor;
    }
    output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);
    ret_per_tensor = at::empty({ntensors}, float_options);
  }
  else
  {
    ret_per_tensor = at::empty({0}, float_options);
  }
Michael Carilli's avatar
Michael Carilli committed
325
326
327
328
329
330
331
332

  DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
    multi_tensor_apply<1>(
      BLOCK_SIZE,
      chunk_size,
      noop_flag,
      tensor_lists,
      L2NormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
333
334
      output.DATA_PTR<float>(),
      per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
335
336
      per_tensor,
      max_chunks_per_tensor);)
Michael Carilli's avatar
Michael Carilli committed
337
338
339
340

  AT_CUDA_CHECK(cudaGetLastError());
  // AT_CUDA_CHECK(cudaDeviceSynchronize());

341
  // This involves one more small kernel launches, but will be negligible end to end.
Michael Carilli's avatar
Michael Carilli committed
342
343
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
344
  auto ret = at::empty({1}, output.options());
345
  const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
346
  auto stream = at::cuda::getCurrentCUDAStream();
347
  cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>(
mcarilli's avatar
mcarilli committed
348
349
350
351
    output.DATA_PTR<float>(),
    per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
    ret.DATA_PTR<float>(),
    per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr,
352
353
354
355
    per_tensor,
    max_chunks_per_tensor);

  return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor);
Michael Carilli's avatar
Michael Carilli committed
356
}
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


// Compute and update grad norm
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
// L-2: gn = sqrt(a * gn^2 + b * n^2)
// L-inf: gn = a * gn + b * n
void multi_tensor_norm_out_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::Tensor out,
  const float alpha,
  const float beta,
  const int norm_type)
{
  auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
373
  TORCH_CHECK(tensor_lists[0][0].device() == noop_flag.device(), "noop flag should be on the same device as tensors");
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  // we don't need global thus uses empty here
  auto output = at::empty({320}, float_options);

  at::Tensor output_per_tensor;
  at::Tensor ret_per_tensor;

  int ntensors = tensor_lists[0].size();
  int max_chunks_per_tensor = -1;

  for(int t = 0; t < ntensors; t++)
  {
    int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
    if(max_chunks_this_tensor > max_chunks_per_tensor)
      max_chunks_per_tensor = max_chunks_this_tensor;
  }

  // Although it is single write then read, still need to be zero
  // Since tailing element also participate cleanup
  output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);

  if (norm_type == 0) {
    DISPATCH_FLOAT_AND_HALF(
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        MaxNormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
403
404
        output.DATA_PTR<float>(),
        output_per_tensor.DATA_PTR<float>(),
405
406
407
408
409
410
411
412
413
414
415
416
        true,
        max_chunks_per_tensor);)
  }
  else {
    DISPATCH_FLOAT_AND_HALF(
      tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
      multi_tensor_apply<1>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        L2NormFunctor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
417
418
        output.DATA_PTR<float>(),
        output_per_tensor.DATA_PTR<float>(),
419
420
421
422
423
424
425
426
427
428
429
430
431
        true,
        max_chunks_per_tensor);)
  }
  AT_CUDA_CHECK(cudaGetLastError());

  // AT_CUDA_CHECK(cudaDeviceSynchronize());

  // This involves one more small kernel launches, but will be negligible end to end.
  // I could get rid of these by hacking the functor + multi tensor harness with persistence
  // logic, but keeping it simple for now
  auto ret = at::empty({1}, output.options());
  auto stream = at::cuda::getCurrentCUDAStream();
  cleanup_v2<<<ntensors, 512, 0, stream>>>(
mcarilli's avatar
mcarilli committed
432
433
434
435
    output.DATA_PTR<float>(),
    output_per_tensor.DATA_PTR<float>(),
    ret.DATA_PTR<float>(),
    out.DATA_PTR<float>(),
436
437
438
439
440
441
442
443
    true,
    max_chunks_per_tensor,
    norm_type,
    alpha,
    beta);

  return ;
}