welford.cu 53.4 KB
Newer Older
jjsjann123's avatar
jjsjann123 committed
1
2
3
4
5
6
7
8
9
10
#include <iostream>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>

#include <cuda.h>
#include <cuda_runtime.h>

#include <vector>

11
#include "type_shim.h"
12
#include "compat.h"
13

14
15
16
17
18
#if defined __HIP_PLATFORM_HCC__
#define SHFL_DOWN __shfl_down
#else
#define SHFL_DOWN __shfl_down_sync
#endif
jjsjann123's avatar
jjsjann123 committed
19
20
21
22

__device__ __forceinline__ int lastpow2(int n)
{
  int out = 1 << (31 - __clz(n));
Jie's avatar
Jie committed
23
  if(n == out)
jjsjann123's avatar
jjsjann123 committed
24
25
26
27
28
    out >>= 1;
  return out;
}

__host__ __forceinline__ int h_next_pow2(unsigned int n) {
Marek Kolodziej's avatar
Marek Kolodziej committed
29
    n--;
jjsjann123's avatar
jjsjann123 committed
30
31
32
33
34
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
Marek Kolodziej's avatar
Marek Kolodziej committed
35
    return ++n;
jjsjann123's avatar
jjsjann123 committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
}

__host__ __forceinline__ int h_last_pow2(unsigned int n) {
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
    return n - (n >> 1);
}


#define WARP_SIZE 32

template<typename T>
__device__ __forceinline__ T warp_reduce_sum(T val)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1)
55
    val = val + SHFL_DOWN(0xffffffff, val, i);
jjsjann123's avatar
jjsjann123 committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  return val;
}

template<typename T>
__device__ __forceinline__ T reduce_block(T *x, T val)
{
  int tid = threadIdx.y*blockDim.x + threadIdx.x;
  int blockSize = blockDim.x * blockDim.y;

  if (blockSize > 32) {
    val = warp_reduce_sum(val);
    if (tid % WARP_SIZE == 0)
      x[tid/WARP_SIZE] = val;

    __syncthreads();

    val = (tid < blockSize / WARP_SIZE? x[tid%WARP_SIZE] : T(0));
  }

  if(tid/WARP_SIZE==0) val = warp_reduce_sum(val);

  return val;
}

Jie's avatar
Jie committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#define ELEMENTS_PER_ITER 4 // enables concurrency within each thread to hide latency
#define ELEMENTS_PER_THREAD 16
#define OPTIMAL_TILE_W 32
#define MAX_H_BLOCK 128
#define MAX_BLOCK_SIZE 512

__host__ int div_ru(int x, int y) {
  return h_last_pow2(1 + (x-1)/y);
}

__host__ void flexible_launch_configs(
      const int reduction,
      const int stride,
      dim3 &block,
      dim3 &grid,
      const bool coop_flag = false) {
  int block_x = std::min(h_last_pow2(stride), OPTIMAL_TILE_W);
  int block_y = std::min(h_last_pow2(div_ru(reduction , ELEMENTS_PER_THREAD)),
                         MAX_BLOCK_SIZE / block_x);
  if (block_x * block_y != MAX_BLOCK_SIZE) {
    block_x = std::min(h_last_pow2(stride), MAX_BLOCK_SIZE / block_y);
  }

  int grid_x = div_ru(stride, block_x);
  int grid_y = std::min(div_ru(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
  if (coop_flag) {
    // it's not worth having a grid reduction if the reduction dimension is not big enough
    grid_y = grid_y < 8 ? 1 : grid_y;
  }

  block.x = block_x;
  block.y = block_y;
  block.z = 1;
  grid.x = grid_x;
  grid.y = grid_y;
  grid.z = 1;
}

template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
                                                      T& mean,
                                                      T& m2n,
                                                      const C& num_new,
                                                      const T& mean_new,
                                                      const T& m2n_new) {
      T factor = T(1.0) / max(1, (count + num_new));
      T delta0 = mean - mean_new;
      mean = (mean_new * num_new + mean * count) * factor;
      m2n += m2n_new + delta0 * delta0 * num_new * count * factor;
      count += num_new;
}
jjsjann123's avatar
jjsjann123 committed
131
132
133
134
135
136

template<typename T>
__device__ __forceinline__ void warp_reduce_mean_m2n(T &mean, T &m2n, int &num)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1) {
137
138
139
140
141
142
    auto num_new = SHFL_DOWN(0xffffffff, num, i);
    auto mean_new = SHFL_DOWN(0xffffffff, mean, i);
    auto m2n_new = SHFL_DOWN(0xffffffff, m2n, i);
#if defined __HIP_PLATFORM_HCC__
    welford_merge_element<T, int>(num, mean, m2n, num_new, mean_new, m2n_new);
#else
Jie's avatar
Jie committed
143
    welford_merge_element(num, mean, m2n, num_new, mean_new, m2n_new);
144
#endif
jjsjann123's avatar
jjsjann123 committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  }
}

template <typename T>
__device__ void welford_reduce_mean_m2n(
      T* __restrict__ x,
      int* __restrict__ count,
      T &mean,
      T &m2n,
      int &num,
      int block_size,
      int thread_id)
{
  int lane = thread_id % WARP_SIZE;
  int wid = thread_id / WARP_SIZE;

  if (block_size > 32) {
    warp_reduce_mean_m2n(mean, m2n, num);
    if (lane == 0) {
      x[wid*2] = mean;
      x[wid*2+1] = m2n;
      count[wid] = num;
    }
    __syncthreads();

    if (wid == 0) {
      mean = (thread_id < block_size / WARP_SIZE)? x[lane*2] : T(0);
      m2n = (thread_id < block_size / WARP_SIZE)? x[lane*2+1] : T(0);
      num = (thread_id < block_size / WARP_SIZE)? count[lane] : int(0);
    }
  }

  if (wid==0) warp_reduce_mean_m2n(mean, m2n, num);

  return;
}

// return spatial size for NC+ Tensors
__host__ int get_tensor_spatial_size(const at::Tensor& input)
{
  auto space_size = input.size(2);
  for (int i = 3; i < input.ndimension(); i++) {
    space_size *= input.size(i);
  }
  return space_size;
}

// promote accumulation scalar type. promote half to float.
__host__ at::ScalarType promote_scalartype(const at::Tensor& input)
{
195
196
  return input.scalar_type() == at::ScalarType::Half ?
           at::ScalarType::Float : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
197
198
199
200
201
}

// return single element size, optional accumulation type promotion.
__host__ size_t get_element_data_size(const at::Tensor& input, bool accumulation = false)
{
202
  auto scalar_type = accumulation ? promote_scalartype(input) : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
203
204
205
  return at::elementSize(scalar_type);
}

Jie's avatar
Jie committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
                                                             T& mean,
                                                             T& m2n,
                                                             C* shmem_count,
                                                             T* shmem_mean,
                                                             T* shmem_m2n) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_mean[address_base] = mean;
  shmem_m2n[address_base] = m2n;
  shmem_count[address_base] = count;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;
      // read shared memory back to register for reduction
      auto num_new = shmem_count[address];
      auto mean_new = shmem_mean[address];
      auto m2n_new = shmem_m2n[address];

      welford_merge_element(count, mean, m2n, num_new, mean_new, m2n_new);

      // last write is not necessary
      shmem_mean[address_base] = mean;
      shmem_m2n[address_base] = m2n;
      shmem_count[address_base] = count;
    }
  }
}

template<typename T>
__device__ __forceinline__ void merge_block_vertical(T& sum_dy,
                                                     T& sum_dy_xmu,
                                                     T* shmem_sum_dy,
                                                     T* shmem_sum_dy_xmu) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_sum_dy[address_base] = sum_dy;
  shmem_sum_dy_xmu[address_base] = sum_dy_xmu;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;

      sum_dy += shmem_sum_dy[address];
      sum_dy_xmu += shmem_sum_dy_xmu[address];

      // last write is not necessary
      shmem_sum_dy[address_base] = sum_dy;
      shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
    }
  }
}

jjsjann123's avatar
jjsjann123 committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

// welford kernel calculating mean/biased_variance/unbiased_variance
template <typename scalar_t, typename accscalar_t, typename outscalar_t>
__global__ void welford_kernel(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      const int bs,
      const int fs,
      const int ss) {
  int block_size = blockDim.x * blockDim.y;
  int count = 0;
  accscalar_t x_mean = accscalar_t(0);
  accscalar_t m_2_n = accscalar_t(0);

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    // sequential welford
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      count++;
      auto x_n = static_cast<accscalar_t>(input[offset+input_base]);
Jie's avatar
Jie committed
288
289
290
      auto d = x_n - x_mean;
      x_mean += d / count;
      m_2_n += d * (x_n - x_mean);
jjsjann123's avatar
jjsjann123 committed
291
292
293
    }
  }

Jie's avatar
Jie committed
294
295
296
  static __shared__ int s_mem[160];
  accscalar_t* s_mem_ac = (accscalar_t*) &s_mem[32];

jjsjann123's avatar
jjsjann123 committed
297
298
299
300
301
302
303
304
305
306
307
308
309
  welford_reduce_mean_m2n<accscalar_t>(s_mem_ac, s_mem, x_mean, m_2_n, count, block_size, thread_id);

  if (thread_id == 0) {
    out_mean[blockIdx.x] = static_cast<outscalar_t>(x_mean);
    out_var_biased[blockIdx.x] = static_cast<outscalar_t>(m_2_n/count);
  }
}

// elementwise BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_forward_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
310
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
311
312
313
314
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int ss,
Jie's avatar
Jie committed
315
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
316
  auto m_c = mean[blockIdx.x];
Jie's avatar
Jie committed
317
  auto inv_std_c = inv_std[blockIdx.x];
318
319
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
320

Jie's avatar
Jie committed
321
322
323
324
325
  for (int batch_offset = blockIdx.y*blockDim.y + threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
      out[address_base+offset] = static_cast<scalar_t>(w_c * (static_cast<accscalar_t>(input[address_base+offset]) - m_c ) * inv_std_c + s_c);
    }
jjsjann123's avatar
jjsjann123 committed
326
327
328
329
330
331
332
333
334
335
336
337
  }
}

// Backward BN kernel, calculates grad_bias, grad_weight as well as intermediate
// results to calculating grad_input.
// Breaking the grad_input to two step to support sync BN, which requires all
// reduce of the intermediate results across processes.
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void reduce_bn_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
338
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
339
340
      accscalar_t* __restrict__ sum_dy_o,
      accscalar_t* __restrict__ sum_dy_xmu_o,
jjsjann123's avatar
jjsjann123 committed
341
342
343
344
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      const int bs,
      const int fs,
Jie's avatar
Jie committed
345
      const int ss) {
jjsjann123's avatar
jjsjann123 committed
346
  static __shared__ int s_mem[64];
jjsjann123's avatar
jjsjann123 committed
347
  //int total_item_num = bs * ss;
jjsjann123's avatar
jjsjann123 committed
348
349
350
351

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  auto r_mean = mean[blockIdx.x];
Jie's avatar
Jie committed
352
  auto factor = inv_std[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

  // Kahan sum
  accscalar_t sum_dy = 0.0;
  accscalar_t sum_dy_xmu = 0.0;
  accscalar_t sum_dy_c = 0.0;
  accscalar_t sum_dy_xmu_c = 0.0;
  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      auto e_grad = static_cast<accscalar_t>(grad_output[offset+input_base]);
      auto e_input = static_cast<accscalar_t>(input[offset+input_base]);
      // calculating sum_dy
      auto sum_dy_y = e_grad - sum_dy_c;
      auto sum_dy_t = sum_dy + sum_dy_y;
      sum_dy_c = (sum_dy_t - sum_dy) - sum_dy_y;
      sum_dy = sum_dy_t;

      // calculating sum_dy_xmu
      auto sum_dy_xmu_y = e_grad * (e_input - r_mean) - sum_dy_xmu_c;
      auto sum_dy_xmu_t = sum_dy_xmu + sum_dy_xmu_y;
      sum_dy_xmu_c = (sum_dy_xmu_t - sum_dy_xmu) - sum_dy_xmu_y;
      sum_dy_xmu = sum_dy_xmu_t;
    }
  }

  sum_dy = reduce_block((accscalar_t*)s_mem, sum_dy);
  __syncthreads();
  sum_dy_xmu = reduce_block((accscalar_t*)s_mem, sum_dy_xmu);
Jie's avatar
Jie committed
381

jjsjann123's avatar
jjsjann123 committed
382
  if (thread_id == 0) {
383
384
385
386
387
388
    if (grad_bias != NULL) {
      grad_bias[blockIdx.x] = static_cast<layerscalar_t>(sum_dy);
    }
    if (grad_weight != NULL) {
      grad_weight[blockIdx.x] = static_cast<layerscalar_t>(sum_dy_xmu * factor);
    }
jjsjann123's avatar
jjsjann123 committed
389
390
391
392
    //mean_dy[blockIdx.x] = sum_dy / total_item_num;
    //mean_dy_xmu[blockIdx.x] = sum_dy_xmu / total_item_num;
    sum_dy_o[blockIdx.x] = sum_dy;
    sum_dy_xmu_o[blockIdx.x] = sum_dy_xmu;
jjsjann123's avatar
jjsjann123 committed
393
394
395
396
397
398
399
400
401
  }
}

// elementwise backward BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_backward_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
402
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
403
      const layerscalar_t* __restrict__ weight,
jjsjann123's avatar
jjsjann123 committed
404
405
406
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      const int* __restrict__ numel,
jjsjann123's avatar
jjsjann123 committed
407
      scalar_t* __restrict__ grad_input,
jjsjann123's avatar
jjsjann123 committed
408
      const int64_t world_size,
jjsjann123's avatar
jjsjann123 committed
409
      const int ss,
Jie's avatar
Jie committed
410
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
411
412
413
414
  int64_t div = 0;
  for (int i = 0; i < world_size; i++) {
    div += numel[i];
  }
jjsjann123's avatar
jjsjann123 committed
415
  auto m_c = static_cast<accscalar_t>(mean[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
416
417
  //auto m_dy_c = static_cast<accscalar_t>(mean_dy[blockIdx.x]);
  auto m_dy_c = static_cast<accscalar_t>(sum_dy[blockIdx.x]) / div;
Jie's avatar
Jie committed
418
  auto factor_1_c = inv_std[blockIdx.x];
419
  auto factor_2_c = (weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x])) * factor_1_c;
jjsjann123's avatar
jjsjann123 committed
420
421
  //factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[blockIdx.x];
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[blockIdx.x] / div;
jjsjann123's avatar
jjsjann123 committed
422

Jie's avatar
Jie committed
423
424
425
  for (int batch_offset = blockIdx.y*blockDim.y+threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
Jie's avatar
Jie committed
426
      grad_input[address_base+offset] = (static_cast<accscalar_t>(grad_output[address_base+offset]) - m_dy_c - (static_cast<accscalar_t>(input[address_base+offset]) - m_c) * factor_1_c) * factor_2_c;
Jie's avatar
Jie committed
427
    }
jjsjann123's avatar
jjsjann123 committed
428
429
430
  }
}

Jie's avatar
Jie committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
template
   <typename scalar_t,
    typename accscalar_t,
    typename outscalar_t,
    int PARALLEL_LOADS>
__global__ void
welford_kernel_c_last(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {
  // hide latency with concurrency
  accscalar_t x_mean[PARALLEL_LOADS];
  accscalar_t m_2_n[PARALLEL_LOADS];
  int count[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    x_mean[i] = accscalar_t(0);
    m_2_n[i] = accscalar_t(0);
    count[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_math[PARALLEL_LOADS];
    accscalar_t x_count_inv[PARALLEL_LOADS];
    accscalar_t is_valid[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_math[j] = input[address_base];
        count[j]++;
        x_count_inv[j] = accscalar_t(1) / count[j];
        is_valid[j] = accscalar_t(1);
      } else {
        x_math[j] = accscalar_t(0);
        x_count_inv[j] = accscalar_t(0);
        is_valid[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate mean/m2n with welford
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      accscalar_t delta0 = x_math[j] - x_mean[j];
      x_mean[j] += delta0 * x_count_inv[j];
      accscalar_t delta1 = x_math[j] - x_mean[j];
      m_2_n[j] += delta0 * delta1 * is_valid[j];
    }
  }

  // thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
  }

  // release x_mean / m_2_n
  auto mean_th = x_mean[0];
  auto m2_th = m_2_n[0];
  auto count_th = count[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
  static __shared__ int shmem_count[MAX_BLOCK_SIZE];

  welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_mean = staging_data;
    volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
    volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_mean[address_base] = mean_th;
      staging_m2n[address_base] = m2_th;
      staging_count[address_base] = count_th;
    }

    __threadfence();
Jie's avatar
Jie committed
535
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      count_th = 0;
      mean_th = accscalar_t(0.0);
      m2_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        int num_new = c_offset < stride ? staging_count[address_base] : 0;
        accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
        accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);

        welford_merge_element(count_th, mean_th, m2_th, num_new, mean_new, m2n_new);
      }

      welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
      if (threadIdx.y == 0 && c_offset < stride) {
        out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
        out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
      out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
    }
  }
}

// parallel welford kernel to further reduce mean / biased_var
// into mean / unbiased_var / inv_std across multiple processes.
template <typename scalar_t>
jjsjann123's avatar
jjsjann123 committed
578
579
580
__global__ void welford_kernel_parallel(
      const scalar_t* __restrict__ mean,
      const scalar_t* __restrict__ var_biased,
jjsjann123's avatar
jjsjann123 committed
581
      const int* __restrict__ numel,
jjsjann123's avatar
jjsjann123 committed
582
583
      scalar_t* __restrict__ out_mean,
      scalar_t* __restrict__ out_var,
Jie's avatar
Jie committed
584
585
586
      scalar_t* __restrict__ inv_std,
      const int world_size,
      const int feature_size,
jjsjann123's avatar
jjsjann123 committed
587
      const float eps) {
jjsjann123's avatar
jjsjann123 committed
588

Jie's avatar
Jie committed
589
590
591
592
593
594
595
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < feature_size; i += gridDim.x * blockDim.x) {
    // load data;
    int address = i;
    scalar_t x_mean = 0;
    scalar_t m_2_n = 0;
    int count = 0;
    for (int j = 0; j < world_size; j++) {
jjsjann123's avatar
jjsjann123 committed
596
      welford_merge_element(count, x_mean, m_2_n, numel[j], mean[address], var_biased[address]*numel[j]);
Jie's avatar
Jie committed
597
598
599
600
601
602
603
      address += feature_size;
    }
    out_mean[i] = x_mean;
    out_var[i] = m_2_n/ (count - 1);
    inv_std[i] = scalar_t(1) / sqrt(m_2_n/count + eps);
  }
}
jjsjann123's avatar
jjsjann123 committed
604

Jie's avatar
Jie committed
605
606
607
608
609
610
611
612
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_forward_c_last_kernel(
      const scalar_t* __restrict__ input,
jjsjann123's avatar
jjsjann123 committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
      const scalar_t* __restrict__ z,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride,
      const bool fuse_relu) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
        if (z != NULL) {
          tmp += z[address_base];
        }
        out[address_base] = (fuse_relu && tmp <= accscalar_t(0.0) ? scalar_t(0.0) : static_cast<scalar_t>(tmp));
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}

// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void relu_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ z,
Jie's avatar
Jie committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
682
683
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);
Jie's avatar
Jie committed
684
685
686
687
688
689
690
691
692

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
jjsjann123's avatar
jjsjann123 committed
693
694
695
696
697
        auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
        if (z != NULL) {
          tmp += z[address_base];
        }
        out[address_base] = (tmp <= accscalar_t(0.0) ? scalar_t(0.0) : grad_output[address_base]);
Jie's avatar
Jie committed
698
699
700
701
702
703
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
704

Jie's avatar
Jie committed
705
706
707
708
709
710
711
712
713
714
715
// batchnorm backward kernel for c last tensor
template
   <typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void reduce_bn_c_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
716
717
      accscalar_t* __restrict__ sum_dy_o,
      accscalar_t* __restrict__ sum_dy_xmu_o,
Jie's avatar
Jie committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {

  // hide latency with concurrency
  accscalar_t sum_dy[PARALLEL_LOADS];
  accscalar_t sum_dy_xmu[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    sum_dy[i] = accscalar_t(0);
    sum_dy_xmu[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  auto r_mean = mean[c_offset];
  auto factor = inv_std[c_offset];

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_input[PARALLEL_LOADS];
    accscalar_t x_grad_output[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_input[j] = input[address_base];
        x_grad_output[j] = grad_output[address_base];
      } else {
        x_input[j] = accscalar_t(0);
        x_grad_output[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
jjsjann123's avatar
jjsjann123 committed
767

Jie's avatar
Jie committed
768
769
770
771
772
773
774
    // calculate sum_dy / sum_dy_xmu
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      sum_dy[j] += x_grad_output[j];
      sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
    }
  }
jjsjann123's avatar
jjsjann123 committed
775

Jie's avatar
Jie committed
776
777
778
779
780
781
  // thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    sum_dy[0] += sum_dy[j];
    sum_dy_xmu[0] += sum_dy_xmu[j];
  }
jjsjann123's avatar
jjsjann123 committed
782

Jie's avatar
Jie committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
  // release array of registers
  auto sum_dy_th = sum_dy[0];
  auto sum_dy_xmu_th = sum_dy_xmu[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];

  merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_sum_dy = staging_data;
    volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_sum_dy[address_base] = sum_dy_th;
      staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
    }

    __threadfence();
Jie's avatar
Jie committed
806
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      sum_dy_th = accscalar_t(0.0);
      sum_dy_xmu_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
        sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
      }

      merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
      if (threadIdx.y == 0 && c_offset < stride) {
830
831
832
833
834
835
        if (grad_bias != NULL) {
          grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
        }
        if (grad_weight != NULL) {
          grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
        }
jjsjann123's avatar
jjsjann123 committed
836
837
838
839
        //mean_dy[c_offset] = sum_dy_th / reduction_size;
        //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
        sum_dy_o[c_offset] = sum_dy_th;
        sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
Jie's avatar
Jie committed
840
841
842
843
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
844
845
846
847
848
849
      if (grad_bias != NULL) {
        grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
      }
      if (grad_weight != NULL) {
        grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
      }
jjsjann123's avatar
jjsjann123 committed
850
851
852
853
      //mean_dy[c_offset] = sum_dy_th / reduction_size;
      //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
      sum_dy_o[c_offset] = sum_dy_th;
      sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
Jie's avatar
Jie committed
854
    }
jjsjann123's avatar
jjsjann123 committed
855
856
  }
}
Jie's avatar
Jie committed
857

Jie's avatar
Jie committed
858
859
860
861
862
863
864
865
866
867
868
869
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
jjsjann123's avatar
jjsjann123 committed
870
871
872
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      const int* __restrict__ numel,
Jie's avatar
Jie committed
873
      scalar_t* __restrict__ grad_input,
jjsjann123's avatar
jjsjann123 committed
874
      const int64_t world_size,
Jie's avatar
Jie committed
875
876
      const int reduction_size,
      const int stride) {
jjsjann123's avatar
jjsjann123 committed
877
878
879
880
  int64_t div = 0;
  for (int i = 0; i < world_size; i++) {
    div += numel[i];
  }
Jie's avatar
Jie committed
881
882
883
884
885
886
887
888
889
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
jjsjann123's avatar
jjsjann123 committed
890
  auto m_dy_c = sum_dy[c_offset] / div;
Jie's avatar
Jie committed
891
  auto factor_1_c = inv_std[c_offset];
892
  auto factor_2_c = (weight == NULL? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
jjsjann123's avatar
jjsjann123 committed
893
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[c_offset] / div;
Jie's avatar
Jie committed
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        grad_input[address_base] = static_cast<scalar_t>(
            (static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
            (static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
            * factor_2_c);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
913
914
915
916
917
918
919
920
921
922
923

std::vector<at::Tensor> welford_mean_var_CUDA(const at::Tensor input) {
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto space_size = get_tensor_spatial_size(input);
  auto scalar_type = promote_scalartype(input);

  at::Tensor out_var_biased = at::empty({feature_size}, input.options().dtype(scalar_type));
  at::Tensor out_mean = at::empty({feature_size}, input.options().dtype(scalar_type));

Jie's avatar
Jie committed
924
925
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE / 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE / block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
926
927
928
929
930
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);

  auto stream = at::cuda::getCurrentCUDAStream();

931
932
  {
    using namespace at;
933
934
935
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_kernel",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      welford_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
936
937
938
          input.DATA_PTR<scalar_t_0>(),
          out_mean.DATA_PTR<accscalar_t>(),
          out_var_biased.DATA_PTR<accscalar_t>(),
939
940
941
          batch_size,
          feature_size,
          space_size);
942
    );
943
  }
jjsjann123's avatar
jjsjann123 committed
944

Jie's avatar
Jie committed
945
  return {out_mean, out_var_biased};
jjsjann123's avatar
jjsjann123 committed
946
947
948
949
950
}

at::Tensor batchnorm_forward_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
951
    const at::Tensor inv_std,
952
953
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
jjsjann123's avatar
jjsjann123 committed
954
955
956
957
958
959
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);
  at::Tensor out = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
960
961
962
963
964
965
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);
jjsjann123's avatar
jjsjann123 committed
966
967
  auto stream = at::cuda::getCurrentCUDAStream();

968
  if (input.scalar_type() == at::ScalarType::Half
969
      && weight.has_value() &&
970
      weight.value().scalar_type() == at::ScalarType::Float) {
971
    using namespace at;
972
973
974
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
975
976
977
978
979
980
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>() : NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
981
          space_size,
Jie's avatar
Jie committed
982
          batch_size);
983
    );
jjsjann123's avatar
jjsjann123 committed
984
  } else {
985
    if (weight.has_value()) {
986
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
987
          "input.scalar_type() is not supported with weight.scalar_type()");
988
    }
989
    using namespace at;
990
991
992
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
993
994
995
996
997
998
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>() : NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
999
          space_size,
Jie's avatar
Jie committed
1000
          batch_size);
1001
    );
jjsjann123's avatar
jjsjann123 committed
1002
1003
1004
1005
1006
1007
1008
1009
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
1010
    const at::Tensor inv_std,
1011
    const at::optional<at::Tensor> weight)
jjsjann123's avatar
jjsjann123 committed
1012
1013
1014
1015
1016
1017
{
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto scalar_type = promote_scalartype(input);

jjsjann123's avatar
jjsjann123 committed
1018
1019
  at::Tensor sum_dy = at::empty({feature_size}, mean.options());
  at::Tensor sum_dy_xmu = at::empty({feature_size}, mean.options());
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({feature_size}, weight.value().options());
    grad_bias = at::empty({feature_size}, weight.value().options());
  } else {
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
jjsjann123's avatar
jjsjann123 committed
1030
1031
1032

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1033
1034
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE/ 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE/ block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
1035
1036
1037
1038
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);
  auto stream = at::cuda::getCurrentCUDAStream();

1039
  if (input.scalar_type() == at::ScalarType::Half
1040
      && weight.has_value() &&
1041
      weight.value().scalar_type() == at::ScalarType::Float) {
1042
    using namespace at;
1043
1044
1045
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1046
1047
1048
1049
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1050
1051
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1052
1053
          weight.has_value() ? grad_weight.DATA_PTR<accscalar_t>() : NULL,
          weight.has_value() ? grad_bias.DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1054
1055
          batch_size,
          feature_size,
Jie's avatar
Jie committed
1056
          space_size);
1057
    );
jjsjann123's avatar
jjsjann123 committed
1058
  } else {
1059
    if (weight.has_value()) {
1060
        TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1061
            "input.scalar_type() is not supported with weight.scalar_type()");
1062
    }
1063
    using namespace at;
1064
1065
1066
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1067
1068
1069
1070
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1071
1072
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1073
1074
          weight.has_value() ? grad_weight.DATA_PTR<scalar_t_0>() : NULL,
          weight.has_value() ? grad_bias.DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1075
1076
          batch_size,
          feature_size,
Jie's avatar
Jie committed
1077
          space_size);
1078
    );
jjsjann123's avatar
jjsjann123 committed
1079
  }
Jie's avatar
Jie committed
1080

jjsjann123's avatar
jjsjann123 committed
1081
  return {sum_dy, sum_dy_xmu, grad_weight, grad_bias};
jjsjann123's avatar
jjsjann123 committed
1082
1083
1084
1085
1086
1087
}

at::Tensor batchnorm_backward_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
1088
    const at::Tensor inv_std,
1089
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1090
1091
1092
    const at::Tensor sum_dy,
    const at::Tensor sum_dy_xmu,
    const at::Tensor count) {
jjsjann123's avatar
jjsjann123 committed
1093
1094
1095
1096
1097
1098
1099
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  at::Tensor grad_input = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1100
1101
1102
1103
1104
1105
1106
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);

jjsjann123's avatar
jjsjann123 committed
1107
1108
  auto stream = at::cuda::getCurrentCUDAStream();

1109
  if (input.scalar_type() == at::ScalarType::Half
1110
      && weight.has_value() &&
1111
      weight.value().scalar_type() == at::ScalarType::Float) {
1112
    using namespace at;
1113
1114
1115
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1116
1117
1118
1119
1120
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1121
1122
1123
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1124
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1125
          count.numel(),
jjsjann123's avatar
jjsjann123 committed
1126
          space_size,
Jie's avatar
Jie committed
1127
          batch_size);
1128
    );
jjsjann123's avatar
jjsjann123 committed
1129
  } else {
1130
    if (weight.has_value()) {
1131
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1132
          "input.scalar_type() is not supported with weight.scalar_type()");
1133
    }
1134
    using namespace at;
1135
1136
1137
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1138
1139
1140
1141
1142
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1143
1144
1145
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1146
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1147
          count.numel(),
jjsjann123's avatar
jjsjann123 committed
1148
          space_size,
Jie's avatar
Jie committed
1149
          batch_size);
1150
    );
jjsjann123's avatar
jjsjann123 committed
1151
  }
Jie's avatar
Jie committed
1152

jjsjann123's avatar
jjsjann123 committed
1153
1154
1155
  return grad_input;
}

Jie's avatar
Jie committed
1156
1157
std::vector<at::Tensor> welford_parallel_CUDA(const at::Tensor mean_feature_nodes,
                                              const at::Tensor var_biased,
jjsjann123's avatar
jjsjann123 committed
1158
                                              const at::Tensor numel,
Jie's avatar
Jie committed
1159
1160
1161
                                              const float eps) {
  const auto world_size = mean_feature_nodes.size(0);
  const auto feature_size = mean_feature_nodes.size(1);
jjsjann123's avatar
jjsjann123 committed
1162
1163

  at::Tensor out_var = at::empty({feature_size}, var_biased.options());
Jie's avatar
Jie committed
1164
  at::Tensor inv_std = at::empty_like(out_var);
jjsjann123's avatar
jjsjann123 committed
1165
1166
1167
  at::Tensor out_mean = at::empty_like(out_var);

  // TODO(jie): tile this for memory coalescing!
Jie's avatar
Jie committed
1168
1169
1170
  const int block = std::min(h_last_pow2(feature_size), MAX_BLOCK_SIZE);
  const int grid = std::max<int>(1, feature_size / block);

jjsjann123's avatar
jjsjann123 committed
1171
1172
  auto stream = at::cuda::getCurrentCUDAStream();

1173
1174
  {
    using namespace at;
1175
1176
    DISPATCH_FLOAT_AND_HALF(mean_feature_nodes.scalar_type(), 0, "welford_parallel_kernel",
      welford_kernel_parallel<scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1177
1178
          mean_feature_nodes.DATA_PTR<scalar_t_0>(),
          var_biased.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1179
          numel.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1180
1181
1182
          out_mean.DATA_PTR<scalar_t_0>(),
          out_var.DATA_PTR<scalar_t_0>(),
          inv_std.DATA_PTR<scalar_t_0>(),
1183
1184
          world_size,
          feature_size,
jjsjann123's avatar
jjsjann123 committed
1185
          eps);
1186
    );
1187
  }
jjsjann123's avatar
jjsjann123 committed
1188

Jie's avatar
Jie committed
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  return {out_mean, out_var, inv_std};
}

std::vector<at::Tensor> welford_mean_var_c_last_CUDA(const at::Tensor input) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  auto scalar_type = promote_scalartype(input);
  auto option = input.options().dtype(scalar_type);

  at::Tensor out_var_biased = at::empty({stride}, option);
  at::Tensor out_mean = at::empty({stride}, option);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({4*stride*grid.y}, option);
1210
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1211
1212
1213
1214
  }

  auto stream = at::cuda::getCurrentCUDAStream();

1215
1216
  {
    using namespace at;
1217
1218
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_c_last",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1219
1220
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1221
      welford_kernel_c_last<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
1222
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1223
1224
1225
          input.DATA_PTR<scalar_t_0>(),
          out_mean.DATA_PTR<accscalar_t>(),
          out_var_biased.DATA_PTR<accscalar_t>(),
1226
1227
1228
1229
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1230
    );
1231
  }
Jie's avatar
Jie committed
1232
1233
1234
1235
1236
1237

  return {out_mean, out_var_biased};
}

at::Tensor batchnorm_forward_c_last_CUDA(
    const at::Tensor input,
jjsjann123's avatar
jjsjann123 committed
1238
    const at::optional<at::Tensor> z,
Jie's avatar
Jie committed
1239
1240
    const at::Tensor mean,
    const at::Tensor inv_std,
1241
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1242
1243
    const at::optional<at::Tensor> shift,
    const bool fuse_relu) {
Jie's avatar
Jie committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1255
1256
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1257
    using namespace at;
1258
1259
1260
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1261
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1262
1263
1264
1265
1266
1267
1268
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
Jie's avatar
Jie committed
1269
          reduction_size,
jjsjann123's avatar
jjsjann123 committed
1270
1271
          stride,
          fuse_relu);
1272
    );
Jie's avatar
Jie committed
1273
  } else {
1274
    if (weight.has_value()) {
1275
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1276
          "input.scalar_type() is not supported with weight.scalar_type()");
1277
    }
1278
    using namespace at;
1279
1280
1281
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1282
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1283
1284
1285
1286
1287
1288
1289
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
Jie's avatar
Jie committed
1290
          reduction_size,
jjsjann123's avatar
jjsjann123 committed
1291
1292
          stride,
          fuse_relu);
1293
    );
Jie's avatar
Jie committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1303
    const at::optional<at::Tensor> weight) {
Jie's avatar
Jie committed
1304
1305
1306
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

jjsjann123's avatar
jjsjann123 committed
1307
1308
  at::Tensor sumn_dy = at::empty({stride}, mean.options());
  at::Tensor sum_dy_xmu = at::empty({stride}, mean.options());
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({stride}, weight.value().options());
    grad_bias = at::empty({stride}, weight.value().options());
  } else {
    // because I cannot return an uninitialized at::Tensor
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
Jie's avatar
Jie committed
1320
1321
1322
1323
1324
1325
1326
1327
1328

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({2*stride*grid.y}, mean.options());
1329
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1330
1331
1332
  }
  auto stream = at::cuda::getCurrentCUDAStream();

1333
  if (input.scalar_type() == at::ScalarType::Half
1334
      && weight.has_value()
1335
      && weight.value().scalar_type() == at::ScalarType::Float) {
1336
    using namespace at;
1337
1338
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1339
1340
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1341
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1342
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1343
1344
1345
1346
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1347
1348
          sumn_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1349
1350
          weight.has_value() ? grad_weight.DATA_PTR<accscalar_t>() : NULL,
          weight.has_value() ?grad_bias.DATA_PTR<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1351
1352
1353
1354
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1355
    );
Jie's avatar
Jie committed
1356
  } else {
1357
    if (weight.has_value()) {
1358
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1359
          "input.scalar_type() is not supported with weight.scalar_type()");
1360
    }
1361
    using namespace at;
1362
1363
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1364
1365
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1366
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1367
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1368
1369
1370
1371
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1372
1373
          sumn_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1374
1375
          weight.has_value() ? grad_weight.DATA_PTR<scalar_t_0>() : NULL,
          weight.has_value() ?grad_bias.DATA_PTR<scalar_t_0>() : NULL,
Jie's avatar
Jie committed
1376
1377
1378
1379
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1380
    );
Jie's avatar
Jie committed
1381
1382
  }

jjsjann123's avatar
jjsjann123 committed
1383
  return {sumn_dy, sum_dy_xmu, grad_weight, grad_bias};
Jie's avatar
Jie committed
1384
1385
1386
1387
1388
1389
1390
}

at::Tensor batchnorm_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1391
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1392
1393
1394
    const at::Tensor sum_dy,
    const at::Tensor sum_dy_xmu,
    const at::Tensor count) {
Jie's avatar
Jie committed
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1406
1407
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1408
    using namespace at;
1409
1410
1411
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1412
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1413
1414
1415
1416
1417
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1418
1419
1420
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1421
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1422
          count.numel(),
Jie's avatar
Jie committed
1423
1424
          reduction_size,
          stride);
1425
    );
Jie's avatar
Jie committed
1426
  } else {
1427
    if (weight.has_value()) {
1428
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1429
          "input.scalar_type() is not supported with weight.scalar_type()");
1430
    }
1431
    using namespace at;
1432
1433
1434
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1435
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1436
1437
1438
1439
1440
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1441
1442
1443
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1444
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1445
          count.numel(),
Jie's avatar
Jie committed
1446
1447
          reduction_size,
          stride);
1448
    );
Jie's avatar
Jie committed
1449
1450
1451
  }
 
  return grad_input;
jjsjann123's avatar
jjsjann123 committed
1452
}
jjsjann123's avatar
jjsjann123 committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

at::Tensor relu_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::optional<at::Tensor> z,
    const at::Tensor mean,
    const at::Tensor inv_std,
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {

  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
    using namespace at;
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      relu_backward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1481
1482
1483
1484
1485
1486
1487
1488
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1489
1490
1491
1492
1493
          reduction_size,
          stride);
    );
  } else {
    if (weight.has_value()) {
1494
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
jjsjann123's avatar
jjsjann123 committed
1495
1496
1497
1498
1499
1500
1501
          "input.scalar_type() is not supported with weight.scalar_type()");
    }
    using namespace at;
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      relu_backward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1502
1503
1504
1505
1506
1507
1508
1509
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1510
1511
1512
1513
1514
1515
          reduction_size,
          stride);
    );
  }
  return out;
}