welford.cu 53.2 KB
Newer Older
jjsjann123's avatar
jjsjann123 committed
1
2
3
4
5
6
7
8
9
10
#include <iostream>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>

#include <cuda.h>
#include <cuda_runtime.h>

#include <vector>

11
#include "type_shim.h"
12
#include "compat.h"
13

jjsjann123's avatar
jjsjann123 committed
14
15
16
17

__device__ __forceinline__ int lastpow2(int n)
{
  int out = 1 << (31 - __clz(n));
Jie's avatar
Jie committed
18
  if(n == out)
jjsjann123's avatar
jjsjann123 committed
19
20
21
22
23
    out >>= 1;
  return out;
}

__host__ __forceinline__ int h_next_pow2(unsigned int n) {
Marek Kolodziej's avatar
Marek Kolodziej committed
24
    n--;
jjsjann123's avatar
jjsjann123 committed
25
26
27
28
29
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
Marek Kolodziej's avatar
Marek Kolodziej committed
30
    return ++n;
jjsjann123's avatar
jjsjann123 committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
}

__host__ __forceinline__ int h_last_pow2(unsigned int n) {
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
    return n - (n >> 1);
}


#define WARP_SIZE 32

template<typename T>
__device__ __forceinline__ T warp_reduce_sum(T val)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1)
    val = val + __shfl_down_sync(0xffffffff, val, i);
  return val;
}

template<typename T>
__device__ __forceinline__ T reduce_block(T *x, T val)
{
  int tid = threadIdx.y*blockDim.x + threadIdx.x;
  int blockSize = blockDim.x * blockDim.y;

  if (blockSize > 32) {
    val = warp_reduce_sum(val);
    if (tid % WARP_SIZE == 0)
      x[tid/WARP_SIZE] = val;

    __syncthreads();

    val = (tid < blockSize / WARP_SIZE? x[tid%WARP_SIZE] : T(0));
  }

  if(tid/WARP_SIZE==0) val = warp_reduce_sum(val);

  return val;
}

Jie's avatar
Jie committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#define ELEMENTS_PER_ITER 4 // enables concurrency within each thread to hide latency
#define ELEMENTS_PER_THREAD 16
#define OPTIMAL_TILE_W 32
#define MAX_H_BLOCK 128
#define MAX_BLOCK_SIZE 512

__host__ int div_ru(int x, int y) {
  return h_last_pow2(1 + (x-1)/y);
}

__host__ void flexible_launch_configs(
      const int reduction,
      const int stride,
      dim3 &block,
      dim3 &grid,
      const bool coop_flag = false) {
  int block_x = std::min(h_last_pow2(stride), OPTIMAL_TILE_W);
  int block_y = std::min(h_last_pow2(div_ru(reduction , ELEMENTS_PER_THREAD)),
                         MAX_BLOCK_SIZE / block_x);
  if (block_x * block_y != MAX_BLOCK_SIZE) {
    block_x = std::min(h_last_pow2(stride), MAX_BLOCK_SIZE / block_y);
  }

  int grid_x = div_ru(stride, block_x);
  int grid_y = std::min(div_ru(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
  if (coop_flag) {
    // it's not worth having a grid reduction if the reduction dimension is not big enough
    grid_y = grid_y < 8 ? 1 : grid_y;
  }

  block.x = block_x;
  block.y = block_y;
  block.z = 1;
  grid.x = grid_x;
  grid.y = grid_y;
  grid.z = 1;
}

template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
                                                      T& mean,
                                                      T& m2n,
                                                      const C& num_new,
                                                      const T& mean_new,
                                                      const T& m2n_new) {
      T factor = T(1.0) / max(1, (count + num_new));
      T delta0 = mean - mean_new;
      mean = (mean_new * num_new + mean * count) * factor;
      m2n += m2n_new + delta0 * delta0 * num_new * count * factor;
      count += num_new;
}
jjsjann123's avatar
jjsjann123 committed
126
127
128
129
130
131
132
133
134

template<typename T>
__device__ __forceinline__ void warp_reduce_mean_m2n(T &mean, T &m2n, int &num)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1) {
    auto num_new = __shfl_down_sync(0xffffffff, num, i);
    auto mean_new = __shfl_down_sync(0xffffffff, mean, i);
    auto m2n_new = __shfl_down_sync(0xffffffff, m2n, i);
Jie's avatar
Jie committed
135
    welford_merge_element(num, mean, m2n, num_new, mean_new, m2n_new);
jjsjann123's avatar
jjsjann123 committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  }
}

template <typename T>
__device__ void welford_reduce_mean_m2n(
      T* __restrict__ x,
      int* __restrict__ count,
      T &mean,
      T &m2n,
      int &num,
      int block_size,
      int thread_id)
{
  int lane = thread_id % WARP_SIZE;
  int wid = thread_id / WARP_SIZE;

  if (block_size > 32) {
    warp_reduce_mean_m2n(mean, m2n, num);
    if (lane == 0) {
      x[wid*2] = mean;
      x[wid*2+1] = m2n;
      count[wid] = num;
    }
    __syncthreads();

    if (wid == 0) {
      mean = (thread_id < block_size / WARP_SIZE)? x[lane*2] : T(0);
      m2n = (thread_id < block_size / WARP_SIZE)? x[lane*2+1] : T(0);
      num = (thread_id < block_size / WARP_SIZE)? count[lane] : int(0);
    }
  }

  if (wid==0) warp_reduce_mean_m2n(mean, m2n, num);

  return;
}

// return spatial size for NC+ Tensors
__host__ int get_tensor_spatial_size(const at::Tensor& input)
{
  auto space_size = input.size(2);
  for (int i = 3; i < input.ndimension(); i++) {
    space_size *= input.size(i);
  }
  return space_size;
}

// promote accumulation scalar type. promote half to float.
__host__ at::ScalarType promote_scalartype(const at::Tensor& input)
{
186
187
  return input.scalar_type() == at::ScalarType::Half ?
           at::ScalarType::Float : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
188
189
190
191
192
}

// return single element size, optional accumulation type promotion.
__host__ size_t get_element_data_size(const at::Tensor& input, bool accumulation = false)
{
193
  auto scalar_type = accumulation ? promote_scalartype(input) : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
194
195
196
  return at::elementSize(scalar_type);
}

Jie's avatar
Jie committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
                                                             T& mean,
                                                             T& m2n,
                                                             C* shmem_count,
                                                             T* shmem_mean,
                                                             T* shmem_m2n) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_mean[address_base] = mean;
  shmem_m2n[address_base] = m2n;
  shmem_count[address_base] = count;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;
      // read shared memory back to register for reduction
      auto num_new = shmem_count[address];
      auto mean_new = shmem_mean[address];
      auto m2n_new = shmem_m2n[address];

      welford_merge_element(count, mean, m2n, num_new, mean_new, m2n_new);

      // last write is not necessary
      shmem_mean[address_base] = mean;
      shmem_m2n[address_base] = m2n;
      shmem_count[address_base] = count;
    }
  }
}

template<typename T>
__device__ __forceinline__ void merge_block_vertical(T& sum_dy,
                                                     T& sum_dy_xmu,
                                                     T* shmem_sum_dy,
                                                     T* shmem_sum_dy_xmu) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_sum_dy[address_base] = sum_dy;
  shmem_sum_dy_xmu[address_base] = sum_dy_xmu;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;

      sum_dy += shmem_sum_dy[address];
      sum_dy_xmu += shmem_sum_dy_xmu[address];

      // last write is not necessary
      shmem_sum_dy[address_base] = sum_dy;
      shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
    }
  }
}

jjsjann123's avatar
jjsjann123 committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

// welford kernel calculating mean/biased_variance/unbiased_variance
template <typename scalar_t, typename accscalar_t, typename outscalar_t>
__global__ void welford_kernel(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      const int bs,
      const int fs,
      const int ss) {
  int block_size = blockDim.x * blockDim.y;
  int count = 0;
  accscalar_t x_mean = accscalar_t(0);
  accscalar_t m_2_n = accscalar_t(0);

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    // sequential welford
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      count++;
      auto x_n = static_cast<accscalar_t>(input[offset+input_base]);
Jie's avatar
Jie committed
279
280
281
      auto d = x_n - x_mean;
      x_mean += d / count;
      m_2_n += d * (x_n - x_mean);
jjsjann123's avatar
jjsjann123 committed
282
283
284
    }
  }

Jie's avatar
Jie committed
285
286
287
  static __shared__ int s_mem[160];
  accscalar_t* s_mem_ac = (accscalar_t*) &s_mem[32];

jjsjann123's avatar
jjsjann123 committed
288
289
290
291
292
293
294
295
296
297
298
299
300
  welford_reduce_mean_m2n<accscalar_t>(s_mem_ac, s_mem, x_mean, m_2_n, count, block_size, thread_id);

  if (thread_id == 0) {
    out_mean[blockIdx.x] = static_cast<outscalar_t>(x_mean);
    out_var_biased[blockIdx.x] = static_cast<outscalar_t>(m_2_n/count);
  }
}

// elementwise BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_forward_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
301
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
302
303
304
305
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int ss,
Jie's avatar
Jie committed
306
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
307
  auto m_c = mean[blockIdx.x];
Jie's avatar
Jie committed
308
  auto inv_std_c = inv_std[blockIdx.x];
309
310
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
311

Jie's avatar
Jie committed
312
313
314
315
316
  for (int batch_offset = blockIdx.y*blockDim.y + threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
      out[address_base+offset] = static_cast<scalar_t>(w_c * (static_cast<accscalar_t>(input[address_base+offset]) - m_c ) * inv_std_c + s_c);
    }
jjsjann123's avatar
jjsjann123 committed
317
318
319
320
321
322
323
324
325
326
327
328
  }
}

// Backward BN kernel, calculates grad_bias, grad_weight as well as intermediate
// results to calculating grad_input.
// Breaking the grad_input to two step to support sync BN, which requires all
// reduce of the intermediate results across processes.
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void reduce_bn_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
329
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
330
331
      accscalar_t* __restrict__ sum_dy_o,
      accscalar_t* __restrict__ sum_dy_xmu_o,
jjsjann123's avatar
jjsjann123 committed
332
333
334
335
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      const int bs,
      const int fs,
Jie's avatar
Jie committed
336
      const int ss) {
jjsjann123's avatar
jjsjann123 committed
337
  static __shared__ int s_mem[64];
jjsjann123's avatar
jjsjann123 committed
338
  //int total_item_num = bs * ss;
jjsjann123's avatar
jjsjann123 committed
339
340
341
342

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  auto r_mean = mean[blockIdx.x];
Jie's avatar
Jie committed
343
  auto factor = inv_std[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

  // Kahan sum
  accscalar_t sum_dy = 0.0;
  accscalar_t sum_dy_xmu = 0.0;
  accscalar_t sum_dy_c = 0.0;
  accscalar_t sum_dy_xmu_c = 0.0;
  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      auto e_grad = static_cast<accscalar_t>(grad_output[offset+input_base]);
      auto e_input = static_cast<accscalar_t>(input[offset+input_base]);
      // calculating sum_dy
      auto sum_dy_y = e_grad - sum_dy_c;
      auto sum_dy_t = sum_dy + sum_dy_y;
      sum_dy_c = (sum_dy_t - sum_dy) - sum_dy_y;
      sum_dy = sum_dy_t;

      // calculating sum_dy_xmu
      auto sum_dy_xmu_y = e_grad * (e_input - r_mean) - sum_dy_xmu_c;
      auto sum_dy_xmu_t = sum_dy_xmu + sum_dy_xmu_y;
      sum_dy_xmu_c = (sum_dy_xmu_t - sum_dy_xmu) - sum_dy_xmu_y;
      sum_dy_xmu = sum_dy_xmu_t;
    }
  }

  sum_dy = reduce_block((accscalar_t*)s_mem, sum_dy);
  __syncthreads();
  sum_dy_xmu = reduce_block((accscalar_t*)s_mem, sum_dy_xmu);
Jie's avatar
Jie committed
372

jjsjann123's avatar
jjsjann123 committed
373
  if (thread_id == 0) {
374
375
376
377
378
379
    if (grad_bias != NULL) {
      grad_bias[blockIdx.x] = static_cast<layerscalar_t>(sum_dy);
    }
    if (grad_weight != NULL) {
      grad_weight[blockIdx.x] = static_cast<layerscalar_t>(sum_dy_xmu * factor);
    }
jjsjann123's avatar
jjsjann123 committed
380
381
382
383
    //mean_dy[blockIdx.x] = sum_dy / total_item_num;
    //mean_dy_xmu[blockIdx.x] = sum_dy_xmu / total_item_num;
    sum_dy_o[blockIdx.x] = sum_dy;
    sum_dy_xmu_o[blockIdx.x] = sum_dy_xmu;
jjsjann123's avatar
jjsjann123 committed
384
385
386
387
388
389
390
391
392
  }
}

// elementwise backward BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_backward_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
393
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
394
      const layerscalar_t* __restrict__ weight,
jjsjann123's avatar
jjsjann123 committed
395
396
397
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      const int* __restrict__ numel,
jjsjann123's avatar
jjsjann123 committed
398
      scalar_t* __restrict__ grad_input,
jjsjann123's avatar
jjsjann123 committed
399
      const int64_t world_size,
jjsjann123's avatar
jjsjann123 committed
400
      const int ss,
Jie's avatar
Jie committed
401
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
402
403
404
405
  int64_t div = 0;
  for (int i = 0; i < world_size; i++) {
    div += numel[i];
  }
jjsjann123's avatar
jjsjann123 committed
406
  auto m_c = static_cast<accscalar_t>(mean[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
407
408
  //auto m_dy_c = static_cast<accscalar_t>(mean_dy[blockIdx.x]);
  auto m_dy_c = static_cast<accscalar_t>(sum_dy[blockIdx.x]) / div;
Jie's avatar
Jie committed
409
  auto factor_1_c = inv_std[blockIdx.x];
410
  auto factor_2_c = (weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x])) * factor_1_c;
jjsjann123's avatar
jjsjann123 committed
411
412
  //factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[blockIdx.x];
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[blockIdx.x] / div;
jjsjann123's avatar
jjsjann123 committed
413

Jie's avatar
Jie committed
414
415
416
  for (int batch_offset = blockIdx.y*blockDim.y+threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
Jie's avatar
Jie committed
417
      grad_input[address_base+offset] = (static_cast<accscalar_t>(grad_output[address_base+offset]) - m_dy_c - (static_cast<accscalar_t>(input[address_base+offset]) - m_c) * factor_1_c) * factor_2_c;
Jie's avatar
Jie committed
418
    }
jjsjann123's avatar
jjsjann123 committed
419
420
421
  }
}

Jie's avatar
Jie committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
template
   <typename scalar_t,
    typename accscalar_t,
    typename outscalar_t,
    int PARALLEL_LOADS>
__global__ void
welford_kernel_c_last(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {
  // hide latency with concurrency
  accscalar_t x_mean[PARALLEL_LOADS];
  accscalar_t m_2_n[PARALLEL_LOADS];
  int count[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    x_mean[i] = accscalar_t(0);
    m_2_n[i] = accscalar_t(0);
    count[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_math[PARALLEL_LOADS];
    accscalar_t x_count_inv[PARALLEL_LOADS];
    accscalar_t is_valid[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_math[j] = input[address_base];
        count[j]++;
        x_count_inv[j] = accscalar_t(1) / count[j];
        is_valid[j] = accscalar_t(1);
      } else {
        x_math[j] = accscalar_t(0);
        x_count_inv[j] = accscalar_t(0);
        is_valid[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate mean/m2n with welford
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      accscalar_t delta0 = x_math[j] - x_mean[j];
      x_mean[j] += delta0 * x_count_inv[j];
      accscalar_t delta1 = x_math[j] - x_mean[j];
      m_2_n[j] += delta0 * delta1 * is_valid[j];
    }
  }

  // thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
  }

  // release x_mean / m_2_n
  auto mean_th = x_mean[0];
  auto m2_th = m_2_n[0];
  auto count_th = count[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
  static __shared__ int shmem_count[MAX_BLOCK_SIZE];

  welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_mean = staging_data;
    volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
    volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_mean[address_base] = mean_th;
      staging_m2n[address_base] = m2_th;
      staging_count[address_base] = count_th;
    }

    __threadfence();
Jie's avatar
Jie committed
526
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      count_th = 0;
      mean_th = accscalar_t(0.0);
      m2_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        int num_new = c_offset < stride ? staging_count[address_base] : 0;
        accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
        accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);

        welford_merge_element(count_th, mean_th, m2_th, num_new, mean_new, m2n_new);
      }

      welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
      if (threadIdx.y == 0 && c_offset < stride) {
        out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
        out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
      out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
    }
  }
}

// parallel welford kernel to further reduce mean / biased_var
// into mean / unbiased_var / inv_std across multiple processes.
template <typename scalar_t>
jjsjann123's avatar
jjsjann123 committed
569
570
571
__global__ void welford_kernel_parallel(
      const scalar_t* __restrict__ mean,
      const scalar_t* __restrict__ var_biased,
jjsjann123's avatar
jjsjann123 committed
572
      const int* __restrict__ numel,
jjsjann123's avatar
jjsjann123 committed
573
574
      scalar_t* __restrict__ out_mean,
      scalar_t* __restrict__ out_var,
Jie's avatar
Jie committed
575
576
577
      scalar_t* __restrict__ inv_std,
      const int world_size,
      const int feature_size,
jjsjann123's avatar
jjsjann123 committed
578
      const float eps) {
jjsjann123's avatar
jjsjann123 committed
579

Jie's avatar
Jie committed
580
581
582
583
584
585
586
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < feature_size; i += gridDim.x * blockDim.x) {
    // load data;
    int address = i;
    scalar_t x_mean = 0;
    scalar_t m_2_n = 0;
    int count = 0;
    for (int j = 0; j < world_size; j++) {
jjsjann123's avatar
jjsjann123 committed
587
      welford_merge_element(count, x_mean, m_2_n, numel[j], mean[address], var_biased[address]*numel[j]);
Jie's avatar
Jie committed
588
589
590
591
592
593
594
      address += feature_size;
    }
    out_mean[i] = x_mean;
    out_var[i] = m_2_n/ (count - 1);
    inv_std[i] = scalar_t(1) / sqrt(m_2_n/count + eps);
  }
}
jjsjann123's avatar
jjsjann123 committed
595

Jie's avatar
Jie committed
596
597
598
599
600
601
602
603
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_forward_c_last_kernel(
      const scalar_t* __restrict__ input,
jjsjann123's avatar
jjsjann123 committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
      const scalar_t* __restrict__ z,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride,
      const bool fuse_relu) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
        if (z != NULL) {
          tmp += z[address_base];
        }
        out[address_base] = (fuse_relu && tmp <= accscalar_t(0.0) ? scalar_t(0.0) : static_cast<scalar_t>(tmp));
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}

// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void relu_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ z,
Jie's avatar
Jie committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
673
674
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);
Jie's avatar
Jie committed
675
676
677
678
679
680
681
682
683

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
jjsjann123's avatar
jjsjann123 committed
684
685
686
687
688
        auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
        if (z != NULL) {
          tmp += z[address_base];
        }
        out[address_base] = (tmp <= accscalar_t(0.0) ? scalar_t(0.0) : grad_output[address_base]);
Jie's avatar
Jie committed
689
690
691
692
693
694
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
695

Jie's avatar
Jie committed
696
697
698
699
700
701
702
703
704
705
706
// batchnorm backward kernel for c last tensor
template
   <typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void reduce_bn_c_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
707
708
      accscalar_t* __restrict__ sum_dy_o,
      accscalar_t* __restrict__ sum_dy_xmu_o,
Jie's avatar
Jie committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {

  // hide latency with concurrency
  accscalar_t sum_dy[PARALLEL_LOADS];
  accscalar_t sum_dy_xmu[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    sum_dy[i] = accscalar_t(0);
    sum_dy_xmu[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  auto r_mean = mean[c_offset];
  auto factor = inv_std[c_offset];

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_input[PARALLEL_LOADS];
    accscalar_t x_grad_output[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_input[j] = input[address_base];
        x_grad_output[j] = grad_output[address_base];
      } else {
        x_input[j] = accscalar_t(0);
        x_grad_output[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
jjsjann123's avatar
jjsjann123 committed
758

Jie's avatar
Jie committed
759
760
761
762
763
764
765
    // calculate sum_dy / sum_dy_xmu
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      sum_dy[j] += x_grad_output[j];
      sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
    }
  }
jjsjann123's avatar
jjsjann123 committed
766

Jie's avatar
Jie committed
767
768
769
770
771
772
  // thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    sum_dy[0] += sum_dy[j];
    sum_dy_xmu[0] += sum_dy_xmu[j];
  }
jjsjann123's avatar
jjsjann123 committed
773

Jie's avatar
Jie committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
  // release array of registers
  auto sum_dy_th = sum_dy[0];
  auto sum_dy_xmu_th = sum_dy_xmu[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];

  merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_sum_dy = staging_data;
    volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_sum_dy[address_base] = sum_dy_th;
      staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
    }

    __threadfence();
Jie's avatar
Jie committed
797
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      sum_dy_th = accscalar_t(0.0);
      sum_dy_xmu_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
        sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
      }

      merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
      if (threadIdx.y == 0 && c_offset < stride) {
821
822
823
824
825
826
        if (grad_bias != NULL) {
          grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
        }
        if (grad_weight != NULL) {
          grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
        }
jjsjann123's avatar
jjsjann123 committed
827
828
829
830
        //mean_dy[c_offset] = sum_dy_th / reduction_size;
        //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
        sum_dy_o[c_offset] = sum_dy_th;
        sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
Jie's avatar
Jie committed
831
832
833
834
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
835
836
837
838
839
840
      if (grad_bias != NULL) {
        grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
      }
      if (grad_weight != NULL) {
        grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
      }
jjsjann123's avatar
jjsjann123 committed
841
842
843
844
      //mean_dy[c_offset] = sum_dy_th / reduction_size;
      //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
      sum_dy_o[c_offset] = sum_dy_th;
      sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
Jie's avatar
Jie committed
845
    }
jjsjann123's avatar
jjsjann123 committed
846
847
  }
}
Jie's avatar
Jie committed
848

Jie's avatar
Jie committed
849
850
851
852
853
854
855
856
857
858
859
860
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
jjsjann123's avatar
jjsjann123 committed
861
862
863
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      const int* __restrict__ numel,
Jie's avatar
Jie committed
864
      scalar_t* __restrict__ grad_input,
jjsjann123's avatar
jjsjann123 committed
865
      const int64_t world_size,
Jie's avatar
Jie committed
866
867
      const int reduction_size,
      const int stride) {
jjsjann123's avatar
jjsjann123 committed
868
869
870
871
  int64_t div = 0;
  for (int i = 0; i < world_size; i++) {
    div += numel[i];
  }
Jie's avatar
Jie committed
872
873
874
875
876
877
878
879
880
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
jjsjann123's avatar
jjsjann123 committed
881
  auto m_dy_c = sum_dy[c_offset] / div;
Jie's avatar
Jie committed
882
  auto factor_1_c = inv_std[c_offset];
883
  auto factor_2_c = (weight == NULL? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
jjsjann123's avatar
jjsjann123 committed
884
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[c_offset] / div;
Jie's avatar
Jie committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        grad_input[address_base] = static_cast<scalar_t>(
            (static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
            (static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
            * factor_2_c);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
904
905
906
907
908
909
910
911
912
913
914

std::vector<at::Tensor> welford_mean_var_CUDA(const at::Tensor input) {
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto space_size = get_tensor_spatial_size(input);
  auto scalar_type = promote_scalartype(input);

  at::Tensor out_var_biased = at::empty({feature_size}, input.options().dtype(scalar_type));
  at::Tensor out_mean = at::empty({feature_size}, input.options().dtype(scalar_type));

Jie's avatar
Jie committed
915
916
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE / 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE / block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
917
918
919
920
921
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);

  auto stream = at::cuda::getCurrentCUDAStream();

922
923
  {
    using namespace at;
924
925
926
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_kernel",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      welford_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
927
928
929
          input.DATA_PTR<scalar_t_0>(),
          out_mean.DATA_PTR<accscalar_t>(),
          out_var_biased.DATA_PTR<accscalar_t>(),
930
931
932
          batch_size,
          feature_size,
          space_size);
933
    );
934
  }
jjsjann123's avatar
jjsjann123 committed
935

Jie's avatar
Jie committed
936
  return {out_mean, out_var_biased};
jjsjann123's avatar
jjsjann123 committed
937
938
939
940
941
}

at::Tensor batchnorm_forward_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
942
    const at::Tensor inv_std,
943
944
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
jjsjann123's avatar
jjsjann123 committed
945
946
947
948
949
950
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);
  at::Tensor out = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
951
952
953
954
955
956
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);
jjsjann123's avatar
jjsjann123 committed
957
958
  auto stream = at::cuda::getCurrentCUDAStream();

959
  if (input.scalar_type() == at::ScalarType::Half
960
      && weight.has_value() &&
961
      weight.value().scalar_type() == at::ScalarType::Float) {
962
    using namespace at;
963
964
965
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
966
967
968
969
970
971
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>() : NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
972
          space_size,
Jie's avatar
Jie committed
973
          batch_size);
974
    );
jjsjann123's avatar
jjsjann123 committed
975
  } else {
976
    if (weight.has_value()) {
977
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
978
          "input.scalar_type() is not supported with weight.scalar_type()");
979
    }
980
    using namespace at;
981
982
983
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
984
985
986
987
988
989
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>() : NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
990
          space_size,
Jie's avatar
Jie committed
991
          batch_size);
992
    );
jjsjann123's avatar
jjsjann123 committed
993
994
995
996
997
998
999
1000
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
1001
    const at::Tensor inv_std,
1002
    const at::optional<at::Tensor> weight)
jjsjann123's avatar
jjsjann123 committed
1003
1004
1005
1006
1007
1008
{
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto scalar_type = promote_scalartype(input);

jjsjann123's avatar
jjsjann123 committed
1009
1010
  at::Tensor sum_dy = at::empty({feature_size}, mean.options());
  at::Tensor sum_dy_xmu = at::empty({feature_size}, mean.options());
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({feature_size}, weight.value().options());
    grad_bias = at::empty({feature_size}, weight.value().options());
  } else {
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
jjsjann123's avatar
jjsjann123 committed
1021
1022
1023

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1024
1025
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE/ 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE/ block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
1026
1027
1028
1029
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);
  auto stream = at::cuda::getCurrentCUDAStream();

1030
  if (input.scalar_type() == at::ScalarType::Half
1031
      && weight.has_value() &&
1032
      weight.value().scalar_type() == at::ScalarType::Float) {
1033
    using namespace at;
1034
1035
1036
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1037
1038
1039
1040
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1041
1042
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1043
1044
          weight.has_value() ? grad_weight.DATA_PTR<accscalar_t>() : NULL,
          weight.has_value() ? grad_bias.DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1045
1046
          batch_size,
          feature_size,
Jie's avatar
Jie committed
1047
          space_size);
1048
    );
jjsjann123's avatar
jjsjann123 committed
1049
  } else {
1050
    if (weight.has_value()) {
1051
        TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1052
            "input.scalar_type() is not supported with weight.scalar_type()");
1053
    }
1054
    using namespace at;
1055
1056
1057
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1058
1059
1060
1061
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1062
1063
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1064
1065
          weight.has_value() ? grad_weight.DATA_PTR<scalar_t_0>() : NULL,
          weight.has_value() ? grad_bias.DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1066
1067
          batch_size,
          feature_size,
Jie's avatar
Jie committed
1068
          space_size);
1069
    );
jjsjann123's avatar
jjsjann123 committed
1070
  }
Jie's avatar
Jie committed
1071

jjsjann123's avatar
jjsjann123 committed
1072
  return {sum_dy, sum_dy_xmu, grad_weight, grad_bias};
jjsjann123's avatar
jjsjann123 committed
1073
1074
1075
1076
1077
1078
}

at::Tensor batchnorm_backward_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
1079
    const at::Tensor inv_std,
1080
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1081
1082
1083
    const at::Tensor sum_dy,
    const at::Tensor sum_dy_xmu,
    const at::Tensor count) {
jjsjann123's avatar
jjsjann123 committed
1084
1085
1086
1087
1088
1089
1090
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  at::Tensor grad_input = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1091
1092
1093
1094
1095
1096
1097
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);

jjsjann123's avatar
jjsjann123 committed
1098
1099
  auto stream = at::cuda::getCurrentCUDAStream();

1100
  if (input.scalar_type() == at::ScalarType::Half
1101
      && weight.has_value() &&
1102
      weight.value().scalar_type() == at::ScalarType::Float) {
1103
    using namespace at;
1104
1105
1106
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1107
1108
1109
1110
1111
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1112
1113
1114
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1115
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1116
          count.numel(),
jjsjann123's avatar
jjsjann123 committed
1117
          space_size,
Jie's avatar
Jie committed
1118
          batch_size);
1119
    );
jjsjann123's avatar
jjsjann123 committed
1120
  } else {
1121
    if (weight.has_value()) {
1122
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1123
          "input.scalar_type() is not supported with weight.scalar_type()");
1124
    }
1125
    using namespace at;
1126
1127
1128
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1129
1130
1131
1132
1133
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1134
1135
1136
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1137
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1138
          count.numel(),
jjsjann123's avatar
jjsjann123 committed
1139
          space_size,
Jie's avatar
Jie committed
1140
          batch_size);
1141
    );
jjsjann123's avatar
jjsjann123 committed
1142
  }
Jie's avatar
Jie committed
1143

jjsjann123's avatar
jjsjann123 committed
1144
1145
1146
  return grad_input;
}

Jie's avatar
Jie committed
1147
1148
std::vector<at::Tensor> welford_parallel_CUDA(const at::Tensor mean_feature_nodes,
                                              const at::Tensor var_biased,
jjsjann123's avatar
jjsjann123 committed
1149
                                              const at::Tensor numel,
Jie's avatar
Jie committed
1150
1151
1152
                                              const float eps) {
  const auto world_size = mean_feature_nodes.size(0);
  const auto feature_size = mean_feature_nodes.size(1);
jjsjann123's avatar
jjsjann123 committed
1153
1154

  at::Tensor out_var = at::empty({feature_size}, var_biased.options());
Jie's avatar
Jie committed
1155
  at::Tensor inv_std = at::empty_like(out_var);
jjsjann123's avatar
jjsjann123 committed
1156
1157
1158
  at::Tensor out_mean = at::empty_like(out_var);

  // TODO(jie): tile this for memory coalescing!
Jie's avatar
Jie committed
1159
1160
1161
  const int block = std::min(h_last_pow2(feature_size), MAX_BLOCK_SIZE);
  const int grid = std::max<int>(1, feature_size / block);

jjsjann123's avatar
jjsjann123 committed
1162
1163
  auto stream = at::cuda::getCurrentCUDAStream();

1164
1165
  {
    using namespace at;
1166
1167
    DISPATCH_FLOAT_AND_HALF(mean_feature_nodes.scalar_type(), 0, "welford_parallel_kernel",
      welford_kernel_parallel<scalar_t_0><<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1168
1169
          mean_feature_nodes.DATA_PTR<scalar_t_0>(),
          var_biased.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1170
          numel.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1171
1172
1173
          out_mean.DATA_PTR<scalar_t_0>(),
          out_var.DATA_PTR<scalar_t_0>(),
          inv_std.DATA_PTR<scalar_t_0>(),
1174
1175
          world_size,
          feature_size,
jjsjann123's avatar
jjsjann123 committed
1176
          eps);
1177
    );
1178
  }
jjsjann123's avatar
jjsjann123 committed
1179

Jie's avatar
Jie committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
  return {out_mean, out_var, inv_std};
}

std::vector<at::Tensor> welford_mean_var_c_last_CUDA(const at::Tensor input) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  auto scalar_type = promote_scalartype(input);
  auto option = input.options().dtype(scalar_type);

  at::Tensor out_var_biased = at::empty({stride}, option);
  at::Tensor out_mean = at::empty({stride}, option);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({4*stride*grid.y}, option);
1201
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1202
1203
1204
1205
  }

  auto stream = at::cuda::getCurrentCUDAStream();

1206
1207
  {
    using namespace at;
1208
1209
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_c_last",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1210
1211
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1212
      welford_kernel_c_last<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
1213
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1214
1215
1216
          input.DATA_PTR<scalar_t_0>(),
          out_mean.DATA_PTR<accscalar_t>(),
          out_var_biased.DATA_PTR<accscalar_t>(),
1217
1218
1219
1220
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1221
    );
1222
  }
Jie's avatar
Jie committed
1223
1224
1225
1226
1227
1228

  return {out_mean, out_var_biased};
}

at::Tensor batchnorm_forward_c_last_CUDA(
    const at::Tensor input,
jjsjann123's avatar
jjsjann123 committed
1229
    const at::optional<at::Tensor> z,
Jie's avatar
Jie committed
1230
1231
    const at::Tensor mean,
    const at::Tensor inv_std,
1232
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1233
1234
    const at::optional<at::Tensor> shift,
    const bool fuse_relu) {
Jie's avatar
Jie committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1246
1247
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1248
    using namespace at;
1249
1250
1251
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1252
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1253
1254
1255
1256
1257
1258
1259
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
Jie's avatar
Jie committed
1260
          reduction_size,
jjsjann123's avatar
jjsjann123 committed
1261
1262
          stride,
          fuse_relu);
1263
    );
Jie's avatar
Jie committed
1264
  } else {
1265
    if (weight.has_value()) {
1266
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1267
          "input.scalar_type() is not supported with weight.scalar_type()");
1268
    }
1269
    using namespace at;
1270
1271
1272
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1273
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1274
1275
1276
1277
1278
1279
1280
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
Jie's avatar
Jie committed
1281
          reduction_size,
jjsjann123's avatar
jjsjann123 committed
1282
1283
          stride,
          fuse_relu);
1284
    );
Jie's avatar
Jie committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1294
    const at::optional<at::Tensor> weight) {
Jie's avatar
Jie committed
1295
1296
1297
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

jjsjann123's avatar
jjsjann123 committed
1298
1299
  at::Tensor sumn_dy = at::empty({stride}, mean.options());
  at::Tensor sum_dy_xmu = at::empty({stride}, mean.options());
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({stride}, weight.value().options());
    grad_bias = at::empty({stride}, weight.value().options());
  } else {
    // because I cannot return an uninitialized at::Tensor
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
Jie's avatar
Jie committed
1311
1312
1313
1314
1315
1316
1317
1318
1319

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({2*stride*grid.y}, mean.options());
1320
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1321
1322
1323
  }
  auto stream = at::cuda::getCurrentCUDAStream();

1324
  if (input.scalar_type() == at::ScalarType::Half
1325
      && weight.has_value()
1326
      && weight.value().scalar_type() == at::ScalarType::Float) {
1327
    using namespace at;
1328
1329
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1330
1331
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1332
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1333
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1334
1335
1336
1337
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1338
1339
          sumn_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1340
1341
          weight.has_value() ? grad_weight.DATA_PTR<accscalar_t>() : NULL,
          weight.has_value() ?grad_bias.DATA_PTR<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1342
1343
1344
1345
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1346
    );
Jie's avatar
Jie committed
1347
  } else {
1348
    if (weight.has_value()) {
1349
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1350
          "input.scalar_type() is not supported with weight.scalar_type()");
1351
    }
1352
    using namespace at;
1353
1354
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
mcarilli's avatar
mcarilli committed
1355
1356
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.DATA_PTR<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.DATA_PTR<int>() : nullptr;
1357
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1358
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1359
1360
1361
1362
          input.DATA_PTR<scalar_t_0>(),
          grad_output.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1363
1364
          sumn_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
mcarilli's avatar
mcarilli committed
1365
1366
          weight.has_value() ? grad_weight.DATA_PTR<scalar_t_0>() : NULL,
          weight.has_value() ?grad_bias.DATA_PTR<scalar_t_0>() : NULL,
Jie's avatar
Jie committed
1367
1368
1369
1370
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1371
    );
Jie's avatar
Jie committed
1372
1373
  }

jjsjann123's avatar
jjsjann123 committed
1374
  return {sumn_dy, sum_dy_xmu, grad_weight, grad_bias};
Jie's avatar
Jie committed
1375
1376
1377
1378
1379
1380
1381
}

at::Tensor batchnorm_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1382
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1383
1384
1385
    const at::Tensor sum_dy,
    const at::Tensor sum_dy_xmu,
    const at::Tensor count) {
Jie's avatar
Jie committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1397
1398
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1399
    using namespace at;
1400
1401
1402
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1403
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1404
1405
1406
1407
1408
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1409
1410
1411
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1412
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1413
          count.numel(),
Jie's avatar
Jie committed
1414
1415
          reduction_size,
          stride);
1416
    );
Jie's avatar
Jie committed
1417
  } else {
1418
    if (weight.has_value()) {
1419
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1420
          "input.scalar_type() is not supported with weight.scalar_type()");
1421
    }
1422
    using namespace at;
1423
1424
1425
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1426
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1427
1428
1429
1430
1431
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1432
1433
1434
          sum_dy.DATA_PTR<accscalar_t>(),
          sum_dy_xmu.DATA_PTR<accscalar_t>(),
          count.DATA_PTR<int>(),
mcarilli's avatar
mcarilli committed
1435
          grad_input.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1436
          count.numel(),
Jie's avatar
Jie committed
1437
1438
          reduction_size,
          stride);
1439
    );
Jie's avatar
Jie committed
1440
1441
1442
  }
 
  return grad_input;
jjsjann123's avatar
jjsjann123 committed
1443
}
jjsjann123's avatar
jjsjann123 committed
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

at::Tensor relu_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::optional<at::Tensor> z,
    const at::Tensor mean,
    const at::Tensor inv_std,
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {

  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
    using namespace at;
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      relu_backward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1472
1473
1474
1475
1476
1477
1478
1479
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<accscalar_t>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1480
1481
1482
1483
1484
          reduction_size,
          stride);
    );
  } else {
    if (weight.has_value()) {
1485
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
jjsjann123's avatar
jjsjann123 committed
1486
1487
1488
1489
1490
1491
1492
          "input.scalar_type() is not supported with weight.scalar_type()");
    }
    using namespace at;
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      relu_backward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
mcarilli's avatar
mcarilli committed
1493
1494
1495
1496
1497
1498
1499
1500
          grad_output.DATA_PTR<scalar_t_0>(),
          input.DATA_PTR<scalar_t_0>(),
          z.has_value() ? z.value().DATA_PTR<scalar_t_0>() : NULL,
          mean.DATA_PTR<accscalar_t>(),
          inv_std.DATA_PTR<accscalar_t>(),
          weight.has_value() ? weight.value().DATA_PTR<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().DATA_PTR<scalar_t_0>(): NULL,
          out.DATA_PTR<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1501
1502
1503
1504
1505
1506
          reduction_size,
          stride);
    );
  }
  return out;
}