main.py 4.43 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
chenych's avatar
chenych committed
16
import torch
chenych's avatar
chenych committed
17
18
19
import ray
from omegaconf import OmegaConf

chenych's avatar
chenych committed
20
21
22
from ..single_controller.ray import RayWorkerGroup
from ..utils.tokenizer import get_processor, get_tokenizer
from ..workers.fsdp_workers import FSDPWorker
chenych's avatar
update  
chenych committed
23
from ..workers.reward import FunctionRewardManager
chenych's avatar
chenych committed
24
from .config import PPOConfig
chenych's avatar
update  
chenych committed
25
from .data_loader import create_dataloader
chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from .ray_trainer import RayPPOTrainer, ResourcePoolManager, Role


# please make sure main_task is not scheduled on head
@ray.remote(num_cpus=1)
class Runner:
    """A runner for RL training."""

    def run(self, config: PPOConfig):
        # print config
        print(json.dumps(config.to_dict(), indent=2))

        # instantiate tokenizer
        tokenizer = get_tokenizer(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )
        processor = get_processor(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )

        # define worker classes
        ray_worker_group_cls = RayWorkerGroup
        role_worker_mapping = {
            Role.ActorRollout: ray.remote(FSDPWorker),
            Role.Critic: ray.remote(FSDPWorker),
            Role.RefPolicy: ray.remote(FSDPWorker),
        }
        global_pool_id = "global_pool"
        resource_pool_spec = {
            global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
        }
        mapping = {
            Role.ActorRollout: global_pool_id,
            Role.Critic: global_pool_id,
            Role.RefPolicy: global_pool_id,
        }
        resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

chenych's avatar
chenych committed
68
69
70
        RemoteRewardManager = ray.remote(FunctionRewardManager).options(num_cpus=config.worker.reward.num_cpus)
        reward_fn = RemoteRewardManager.remote(config.worker.reward, tokenizer)
        val_reward_fn = RemoteRewardManager.remote(config.worker.reward, tokenizer)
chenych's avatar
update  
chenych committed
71

chenych's avatar
chenych committed
72
        train_dataloader, val_dataloader = create_dataloader(config.data, tokenizer, processor)
chenych's avatar
chenych committed
73
74
75
76
77

        trainer = RayPPOTrainer(
            config=config,
            tokenizer=tokenizer,
            processor=processor,
chenych's avatar
update  
chenych committed
78
79
            train_dataloader=train_dataloader,
            val_dataloader=val_dataloader,
chenych's avatar
chenych committed
80
81
82
83
84
85
86
87
            role_worker_mapping=role_worker_mapping,
            resource_pool_manager=resource_pool_manager,
            ray_worker_group_cls=ray_worker_group_cls,
            reward_fn=reward_fn,
            val_reward_fn=val_reward_fn,
        )
        trainer.init_workers()
        trainer.fit()
chenych's avatar
chenych committed
88
89
90
91
92


def main():
    cli_args = OmegaConf.from_cli()
    default_config = OmegaConf.structured(PPOConfig())
chenych's avatar
chenych committed
93
94
95
96
97
98
99

    if hasattr(cli_args, "config"):
        config_path = cli_args.pop("config", None)
        file_config = OmegaConf.load(config_path)
        default_config = OmegaConf.merge(default_config, file_config)

    ppo_config = OmegaConf.merge(default_config, cli_args)
chenych's avatar
update  
chenych committed
100
101
    ppo_config: PPOConfig = OmegaConf.to_object(ppo_config)
    ppo_config.deep_post_init()
chenych's avatar
chenych committed
102
103

    if not ray.is_initialized():
chenych's avatar
update  
chenych committed
104
105
106
107
108
109
110
111
112
        runtime_env = {
            "env_vars": {
                "TOKENIZERS_PARALLELISM": "true",
                "NCCL_DEBUG": "WARN",
                "VLLM_LOGGING_LEVEL": "INFO",
                "TORCH_NCCL_AVOID_RECORD_STREAMS": "1",
                "PYTORCH_CUDA_ALLOC_CONF": "expandable_segments:False",
            }
        }
chenych's avatar
Update  
chenych committed
113
        # this is for local ray cluster
chenych's avatar
chenych committed
114
115
        if torch.version.hip is not None:
            ray.init(num_gpus=torch.cuda.device_count(),
chenych's avatar
update  
chenych committed
116
117
                        ignore_reinit_error=True,
                        runtime_env=runtime_env)
chenych's avatar
chenych committed
118
        else:
chenych's avatar
update  
chenych committed
119
            ray.init(runtime_env=runtime_env)
chenych's avatar
Update  
chenych committed
120

chenych's avatar
chenych committed
121
122
    runner = Runner.remote()
    ray.get(runner.run.remote(ppo_config))
chenych's avatar
chenych committed
123
124
125
126


if __name__ == "__main__":
    main()