main.py 4.4 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
chenych's avatar
chenych committed
16
import torch
chenych's avatar
chenych committed
17
18
19
import ray
from omegaconf import OmegaConf

chenych's avatar
chenych committed
20
21
22
from ..single_controller.ray import RayWorkerGroup
from ..utils.tokenizer import get_processor, get_tokenizer
from ..workers.fsdp_workers import FSDPWorker
chenych's avatar
update  
chenych committed
23
from ..workers.reward import FunctionRewardManager
chenych's avatar
chenych committed
24
from .config import PPOConfig
chenych's avatar
update  
chenych committed
25
from .data_loader import create_dataloader
chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from .ray_trainer import RayPPOTrainer, ResourcePoolManager, Role


# please make sure main_task is not scheduled on head
@ray.remote(num_cpus=1)
class Runner:
    """A runner for RL training."""

    def run(self, config: PPOConfig):
        # print config
        print(json.dumps(config.to_dict(), indent=2))

        # instantiate tokenizer
        tokenizer = get_tokenizer(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )
        processor = get_processor(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )

        # define worker classes
        ray_worker_group_cls = RayWorkerGroup
        role_worker_mapping = {
            Role.ActorRollout: ray.remote(FSDPWorker),
            Role.Critic: ray.remote(FSDPWorker),
            Role.RefPolicy: ray.remote(FSDPWorker),
        }
        global_pool_id = "global_pool"
        resource_pool_spec = {
            global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
        }
        mapping = {
            Role.ActorRollout: global_pool_id,
            Role.Critic: global_pool_id,
            Role.RefPolicy: global_pool_id,
        }
        resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

chenych's avatar
update  
chenych committed
68
69
70
71
72
73
        reward_fn = FunctionRewardManager(config=config.worker.reward, tokenizer=tokenizer)
        val_reward_fn = FunctionRewardManager(config=config.worker.reward, tokenizer=tokenizer)

        train_dataloader, val_dataloader = create_dataloader(
            config=config.data, tokenizer=tokenizer, processor=processor
        )
chenych's avatar
chenych committed
74
75
76
77
78

        trainer = RayPPOTrainer(
            config=config,
            tokenizer=tokenizer,
            processor=processor,
chenych's avatar
update  
chenych committed
79
80
            train_dataloader=train_dataloader,
            val_dataloader=val_dataloader,
chenych's avatar
chenych committed
81
82
83
84
85
86
87
88
            role_worker_mapping=role_worker_mapping,
            resource_pool_manager=resource_pool_manager,
            ray_worker_group_cls=ray_worker_group_cls,
            reward_fn=reward_fn,
            val_reward_fn=val_reward_fn,
        )
        trainer.init_workers()
        trainer.fit()
chenych's avatar
chenych committed
89
90
91
92
93


def main():
    cli_args = OmegaConf.from_cli()
    default_config = OmegaConf.structured(PPOConfig())
chenych's avatar
chenych committed
94
95
96
97
98
99
100

    if hasattr(cli_args, "config"):
        config_path = cli_args.pop("config", None)
        file_config = OmegaConf.load(config_path)
        default_config = OmegaConf.merge(default_config, file_config)

    ppo_config = OmegaConf.merge(default_config, cli_args)
chenych's avatar
update  
chenych committed
101
102
    ppo_config: PPOConfig = OmegaConf.to_object(ppo_config)
    ppo_config.deep_post_init()
chenych's avatar
chenych committed
103
104

    if not ray.is_initialized():
chenych's avatar
update  
chenych committed
105
106
107
108
109
110
111
112
113
        runtime_env = {
            "env_vars": {
                "TOKENIZERS_PARALLELISM": "true",
                "NCCL_DEBUG": "WARN",
                "VLLM_LOGGING_LEVEL": "INFO",
                "TORCH_NCCL_AVOID_RECORD_STREAMS": "1",
                "PYTORCH_CUDA_ALLOC_CONF": "expandable_segments:False",
            }
        }
chenych's avatar
Update  
chenych committed
114
        # this is for local ray cluster
chenych's avatar
chenych committed
115
116
        if torch.version.hip is not None:
            ray.init(num_gpus=torch.cuda.device_count(),
chenych's avatar
update  
chenych committed
117
118
                        ignore_reinit_error=True,
                        runtime_env=runtime_env)
chenych's avatar
chenych committed
119
        else:
chenych's avatar
update  
chenych committed
120
            ray.init(runtime_env=runtime_env)
chenych's avatar
Update  
chenych committed
121

chenych's avatar
chenych committed
122
123
    runner = Runner.remote()
    ray.get(runner.run.remote(ppo_config))
chenych's avatar
chenych committed
124
125
126
127


if __name__ == "__main__":
    main()