README.md 5.43 KB
Newer Older
Soujanya Poria's avatar
Soujanya Poria committed
1
2
3
4
5
6
7
8
9
10
<h1 align="center">
<br/>  
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization 
<br/>
✨✨✨


</h1>

<div align="center">
Soujanya Poria's avatar
Soujanya Poria committed
11
  <img src="assets/tf_teaser.png" alt="TangoFlux" width="1000" />
Soujanya Poria's avatar
Soujanya Poria committed
12
13
14

<br/>

Soujanya Poria's avatar
Soujanya Poria committed
15
[![arXiv](https://img.shields.io/badge/Read_the_Paper-blue?link=https%3A%2F%2Fopenreview.net%2Fattachment%3Fid%3DtpJPlFTyxd%26name%3Dpdf)](https://arxiv.org/abs/2412.21037) [![Static Badge](https://img.shields.io/badge/TangoFlux-Huggingface-violet?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/declare-lab/TangoFlux) [![Static Badge](https://img.shields.io/badge/Demos-declare--lab-brightred?style=flat)](https://tangoflux.github.io/) [![Static Badge](https://img.shields.io/badge/TangoFlux-Huggingface_Space-8A2BE2?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/spaces/declare-lab/TangoFlux) [![Static Badge](https://img.shields.io/badge/TangoFlux_Dataset-Huggingface-red?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/datasets/declare-lab/CRPO)
Soujanya Poria's avatar
Soujanya Poria committed
16
17
18
19
20
21




</div>

Chia-Yu Hung's avatar
Chia-Yu Hung committed
22
23
24
25
26
27
## Quickstart on Google Colab

| Colab |
| --- |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1j__4fl_BlaVS_225M34d-EKxsVDJPRiR?usp=sharing) 

Soujanya Poria's avatar
Soujanya Poria committed
28
## Overall Pipeline
Navonil Majumder's avatar
Navonil Majumder committed
29
TangoFlux consists of FluxTransformer blocks, which are Diffusion Transformers (DiT) and Multimodal Diffusion Transformers (MMDiT) conditioned on textual prompt and duration embedding to generate 44.1kHz audio up to 30 seconds long. TangoFlux learns a rectified flow trajectory to an audio latent representation encoded by a variational autoencoder (VAE). TangoFlux training pipeline consists of three stages: pre-training, fine-tuning, and preference optimization with CRPO. CRPO, particularly, iteratively generates new synthetic data and constructs preference pairs for preference optimization using DPO loss for flow matching.
Soujanya Poria's avatar
Soujanya Poria committed
30

Soujanya Poria's avatar
Soujanya Poria committed
31
![cover-photo](assets/tangoflux.png)
Soujanya Poria's avatar
Soujanya Poria committed
32

Soujanya Poria's avatar
Soujanya Poria committed
33

Navonil Majumder's avatar
Navonil Majumder committed
34
🚀 **TangoFlux can generate up to 30 seconds long 44.1kHz stereo audios in about 3 seconds.**
Soujanya Poria's avatar
Soujanya Poria committed
35

Soujanya Poria's avatar
Soujanya Poria committed
36
## Training TangoFlux
Navonil Majumder's avatar
Navonil Majumder committed
37
We use the accelerate package from HuggingFace for multi-gpu training. Run accelerate config from terminal and set up your run configuration by the answering the questions asked. We have placed the default accelerator config in the `configs` folder. 
Chia-Yu Hung's avatar
Chia-Yu Hung committed
38

Navonil Majumder's avatar
Navonil Majumder committed
39
40
`tangoflux_config` defines the training and model hyperparameters:
```bash
Chia-Yu Hung's avatar
Chia-Yu Hung committed
41
42
CUDA_VISISBLE_DEVICES=0,1 accelerate launch --config_file='configs/accelerator_config.yaml' src/train.py   --checkpointing_steps="best" --save_every=5 --config='configs/tangoflux_config.yaml'
```
Soujanya Poria's avatar
Soujanya Poria committed
43
## Inference with TangoFlux
Navonil Majumder's avatar
Navonil Majumder committed
44
45
Download the TangoFlux model and generate audio from a text prompt.
TangoFlux can generate audios up to 30 second long through passing in a duration variable in the `model.generate` function.
Chia-Yu Hung's avatar
Chia-Yu Hung committed
46
47
```python
import torchaudio
hungchiayu1's avatar
updates  
hungchiayu1 committed
48
49
from tangoflux import TangoFluxInference
from IPython.display import Audio
Chia-Yu Hung's avatar
Chia-Yu Hung committed
50

hungchiayu1's avatar
updates  
hungchiayu1 committed
51
52
model = TangoFluxInference(name='declare-lab/TangoFlux')
audio = model.generate('Hammer slowly hitting the wooden table', steps=50, duration=10)
Chia-Yu Hung's avatar
Chia-Yu Hung committed
53

hungchiayu1's avatar
updates  
hungchiayu1 committed
54
55
Audio(data=audio, rate=44100)
```
Navonil Majumder's avatar
Navonil Majumder committed
56
Our evaluation shows that inferring with 50 steps yield the best results. A CFG scale of 3.5, 4, and 4.5 yield simliar quality output.
Chia-Yu Hung's avatar
Chia-Yu Hung committed
57
For faster inference, consider setting steps to 25 that yield similar audio quality.
Soujanya Poria's avatar
Soujanya Poria committed
58
59
60

## Evaluation Scripts

Navonil Majumder's avatar
Navonil Majumder committed
61
## TangoFlux vs. Other Audio Generation Models
Soujanya Poria's avatar
Soujanya Poria committed
62

Navonil Majumder's avatar
Navonil Majumder committed
63
This key comparison metrics include:
Soujanya Poria's avatar
Soujanya Poria committed
64
65

- **Output Length**: Represents the duration of the generated audio.
Navonil Majumder's avatar
Navonil Majumder committed
66
- **FD**<sub>openl3</sub>: Fréchet Distance.
Soujanya Poria's avatar
Soujanya Poria committed
67
68
69
70
- **KL**<sub>passt</sub>: KL divergence.
- **CLAP**<sub>score</sub>: Alignment score.


Navonil Majumder's avatar
Navonil Majumder committed
71
All the inference times are observed on the same A40 GPU. The counts of trainable parameters are reported in the **\#Params** column.
Soujanya Poria's avatar
Soujanya Poria committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

| Model                           | \#Params  | Duration | Steps | FD<sub>openl3</sub> ↓ | KL<sub>passt</sub> ↓ | CLAP<sub>score</sub> ↑ | IS ↑ | Inference Time (s) |
|---------------------------------|-----------|----------|-------|-----------------------|----------------------|------------------------|------|--------------------|
| **AudioLDM 2-large**            | 712M      | 10 sec   | 200   | 108.3                | 1.81                 | 0.419                  | 7.9  | 24.8               |
| **Stable Audio Open**           | 1056M     | 47 sec   | 100   | 89.2                 | 2.58                 | 0.291                  | 9.9  | 8.6                |
| **Tango 2**                     | 866M      | 10 sec   | 200   | 108.4                | **1.11**             | 0.447                  | 9.0  | 22.8               |
| **TangoFlux-base**              | **515M**  | 30 sec   | 50    | 80.2                 | 1.22                 | 0.431                  | 11.7 | **3.7**            |
| **TangoFlux**                   | **515M**  | 30 sec   | 50    | **75.1**             | 1.15                 | **0.480**              | **12.2** | **3.7**         |



## Citation

```bibtex

@article{Hung2025TangoFlux,
  title = {TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization},
  author = {Chia-Yu Hung and Navonil Majumder and Zhifeng Kong and Ambuj Mehrish and Rafael Valle and Bryan Catanzaro and Soujanya Poria},
  year = {2025},
  url = {https://openreview.net/attachment?id=tpJPlFTyxd&name=pdf},
  note = {Available at OpenReview}
}

```