README.md 4.35 KB
Newer Older
Soujanya Poria's avatar
Soujanya Poria committed
1
2
3
4
5
6
7
8
9
10
<h1 align="center">
<br/>  
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization 
<br/>
✨✨✨


</h1>

<div align="center">
Soujanya Poria's avatar
Soujanya Poria committed
11
  <img src="assets/tf_teaser.png" alt="TangoFlux" width="1000" />
Soujanya Poria's avatar
Soujanya Poria committed
12
13
14

<br/>

Soujanya Poria's avatar
Soujanya Poria committed
15
[![arXiv](https://img.shields.io/badge/Read_the_Paper-blue?link=https%3A%2F%2Fopenreview.net%2Fattachment%3Fid%3DtpJPlFTyxd%26name%3Dpdf)](https://arxiv.org/abs/2412.21037) [![Static Badge](https://img.shields.io/badge/TangoFlux-Huggingface-violet?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/declare-lab/TangoFlux) [![Static Badge](https://img.shields.io/badge/Demos-declare--lab-brightred?style=flat)](https://tangoflux.github.io/) [![Static Badge](https://img.shields.io/badge/TangoFlux-Huggingface_Space-8A2BE2?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/spaces/declare-lab/TangoFlux) [![Static Badge](https://img.shields.io/badge/TangoFlux_Dataset-Huggingface-red?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Fdeclare-lab%2FTangoFlux)](https://huggingface.co/datasets/declare-lab/CRPO)
Soujanya Poria's avatar
Soujanya Poria committed
16
17
18
19
20
21




</div>

Soujanya Poria's avatar
Soujanya Poria committed
22
23
24
## Overall Pipeline
TangoFlux consists of FluxTransformer blocks which are Diffusion Transformer (DiT) and Multimodal Diffusion Transformer (MMDiT), conditioned on textual prompt and duration embedding to generate audio at 44.1kHz up to 30 seconds. TangoFlux learns a rectified flow trajectory from audio latent representation encoded by a variational autoencoder (VAE). The TangoFlux training pipeline consists of three stages: pre-training, fine-tuning, and preference optimization. TangoFlux is aligned via CRPO which iteratively generates new synthetic data and constructs preference pairs to perform preference optimization.

Soujanya Poria's avatar
Soujanya Poria committed
25
![cover-photo](assets/tangoflux.png)
Soujanya Poria's avatar
Soujanya Poria committed
26
27
28
29
30
31

## Quickstart

## Training TangoFlux

## Inference with TangoFlux
hungchiayu1's avatar
updates  
hungchiayu1 committed
32
33
34
35
36
37
38
39
40
41
Download the TangoFlux model and generate audio from a text prompt:

```import torchaudio
from tangoflux import TangoFluxInference
from IPython.display import Audio
model = TangoFluxInference(name='declare-lab/TangoFlux')
audio = model.generate('Hammer slowly hitting the wooden table', steps=50, duration=10)
Audio(data=audio, rate=44100)
```

Soujanya Poria's avatar
Soujanya Poria committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

## Evaluation Scripts

## Comparison Between TangoFlux and Other Audio Generation Models

This comparison evaluates TangoFlux and other audio generation models across various metrics. Key metrics include:

- **Output Length**: Represents the duration of the generated audio.
- **FD**<sub>openl3</sub>: Frechet Distance.
- **KL**<sub>passt</sub>: KL divergence.
- **CLAP**<sub>score</sub>: Alignment score.


All inference times are computed on the same A40 GPU. The trainable parameters are reported in the **\#Params** column.

| Model                           | \#Params  | Duration | Steps | FD<sub>openl3</sub> ↓ | KL<sub>passt</sub> ↓ | CLAP<sub>score</sub> ↑ | IS ↑ | Inference Time (s) |
|---------------------------------|-----------|----------|-------|-----------------------|----------------------|------------------------|------|--------------------|
| **AudioLDM 2-large**            | 712M      | 10 sec   | 200   | 108.3                | 1.81                 | 0.419                  | 7.9  | 24.8               |
| **Stable Audio Open**           | 1056M     | 47 sec   | 100   | 89.2                 | 2.58                 | 0.291                  | 9.9  | 8.6                |
| **Tango 2**                     | 866M      | 10 sec   | 200   | 108.4                | **1.11**             | 0.447                  | 9.0  | 22.8               |
| **TangoFlux-base**              | **515M**  | 30 sec   | 50    | 80.2                 | 1.22                 | 0.431                  | 11.7 | **3.7**            |
| **TangoFlux**                   | **515M**  | 30 sec   | 50    | **75.1**             | 1.15                 | **0.480**              | **12.2** | **3.7**         |



## Citation

```bibtex

@article{Hung2025TangoFlux,
  title = {TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization},
  author = {Chia-Yu Hung and Navonil Majumder and Zhifeng Kong and Ambuj Mehrish and Rafael Valle and Bryan Catanzaro and Soujanya Poria},
  year = {2025},
  url = {https://openreview.net/attachment?id=tpJPlFTyxd&name=pdf},
  note = {Available at OpenReview}
}

```