SanaModel.cpp 13.7 KB
Newer Older
Hyunsung Lee's avatar
Hyunsung Lee committed
1
2
#include <iostream>

muyangli's avatar
muyangli committed
3
4
5
6
7
#include "SanaModel.h"
#include "kernels/zgemm/zgemm.h"
#include "flash_api.h"
#include "kernels/misc_kernels.h"

limm's avatar
limm committed
8
9
// #include <nvtx3/nvToolsExt.h>
#include <roctx.h>
muyangli's avatar
muyangli committed
10
11
12
13

using spdlog::fmt_lib::format;
using namespace nunchaku;

Muyang Li's avatar
Muyang Li committed
14
15
16
17
18
SanaLinearAttention::SanaLinearAttention(
    int dim, bool bias, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : dim(dim), dim_pad(ceilDiv(dim, 128) * 128), qkv_proj(dim, dim_pad * 3, bias, use_fp4, dtype, device),
      out_proj(dim_pad, dim, bias, use_fp4, dtype, device), pag_to_v(std::nullopt) {
    registerChildren(qkv_proj, "qkv_proj")(out_proj, "out_proj");
muyangli's avatar
muyangli committed
19
20

    if (pag) {
21
        pag_to_v.emplace(dim, dim_pad, bias, use_fp4, dtype, device);
muyangli's avatar
muyangli committed
22
23
24
25
26
27
        registerChildren(pag_to_v.value(), "pag_to_v");
    }
}

Tensor SanaLinearAttention::forward(Tensor x, Tensor out) {
    constexpr int HEAD_DIM = 32;
Hyunsung Lee's avatar
Hyunsung Lee committed
28

muyangli's avatar
muyangli committed
29
    assert(x.ndims() == 3);
Muyang Li's avatar
Muyang Li committed
30
31
    const int batch_size     = x.shape[0];
    const int num_tokens     = x.shape[1];
muyangli's avatar
muyangli committed
32
33
34
35
36
37
38
39
40
41
42
43
44
    const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;
    assert(x.shape[2] == dim);

    const int num_heads = dim_pad / HEAD_DIM;

    if (num_tokens_pad != num_tokens) {
        spdlog::debug("SanaLinearAttention: pad num_tokens from {} to {}", num_tokens, num_tokens_pad);

        Tensor x_pad = Tensor::allocate({batch_size, num_tokens_pad, dim}, x.dtype(), x.device());
        x_pad.zero_();
        for (int i = 0; i < batch_size; i++) {
            x_pad.slice(0, i, i + 1).slice(1, 0, num_tokens).copy_(x.slice(0, i, i + 1));
        }
Hyunsung Lee's avatar
Hyunsung Lee committed
45

muyangli's avatar
muyangli committed
46
47
48
49
50
        x = x_pad;
    }

    auto qact = qkv_proj.quantize(x, false);

Muyang Li's avatar
Muyang Li committed
51
    Tensor q  = Tensor::allocate({batch_size, num_tokens_pad, dim_pad}, x.dtype(), x.device());
muyangli's avatar
muyangli committed
52
53
    Tensor vk = Tensor::allocate({batch_size, num_heads, HEAD_DIM + 1, HEAD_DIM}, Tensor::FP32, x.device());

Muyang Li's avatar
Muyang Li committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    kernels::gemm_w4a4(qact.act,
                       qkv_proj.qweight,
                       {},
                       {},
                       qact.ascales,
                       qkv_proj.wscales,
                       {},
                       {},
                       qact.lora_act,
                       qkv_proj.lora_up,
                       {},
                       {},
                       {},
                       {},
                       {},
                       qkv_proj.bias,
                       {},
                       vk,
                       q,
                       qact.is_unsigned,
                       qkv_proj.lora_scales,
                       false,
                       qkv_proj.use_fp4,
                       *qkv_proj.wtscale.data_ptr<float>(),
                       qkv_proj.wcscales.numel() > 0 ? qkv_proj.wcscales : Tensor{},
                       {},
                       {},
                       {},
                       0);
muyangli's avatar
muyangli committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    debug("vk", vk);
    debug("q", q);

    kernels::linearattn_vk_mul_q(q, vk);

    debug("raw_attn_output", q);

    if (num_tokens_pad != num_tokens) {
        Tensor q_unpad = Tensor::allocate({batch_size, num_tokens, dim_pad}, q.dtype(), q.device());
        for (int i = 0; i < batch_size; i++) {
            q_unpad.slice(0, i, i + 1).copy_(q.slice(0, i, i + 1).slice(1, 0, num_tokens));
        }
        q = q_unpad;
    }

    // kernels::gemm_w8a8_fuse_litela(qact.act, qkv.qweight, q, vk, qact.ascales, qkv.wscales);

    // return out_proj.forward(q);
    if (!out.valid()) {
        out = Tensor::allocate({batch_size, num_tokens, dim}, q.dtype(), q.device());
    }
    out_proj.forward(q, out);
    return out;
}

Tensor SanaLinearAttention::forward_pag(Tensor x, bool cfg) {
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];

    Tensor out = Tensor::allocate({batch_size, num_tokens, dim}, x.dtype(), x.device());
    Tensor x_org, x_ptb;
    Tensor out_org, out_ptb;

    if (cfg) {
        assert(batch_size % 3 == 0);
Muyang Li's avatar
Muyang Li committed
119
120
        x_org   = x.slice(0, 0, batch_size * 2 / 3);
        x_ptb   = x.slice(0, batch_size * 2 / 3, batch_size);
muyangli's avatar
muyangli committed
121
122
123
124
        out_org = out.slice(0, 0, batch_size * 2 / 3);
        out_ptb = out.slice(0, batch_size * 2 / 3, batch_size);
    } else {
        assert(batch_size % 2 == 0);
Muyang Li's avatar
Muyang Li committed
125
126
        x_org   = x.slice(0, 0, batch_size / 2);
        x_ptb   = x.slice(0, batch_size / 2, batch_size);
muyangli's avatar
muyangli committed
127
128
129
130
131
        out_org = out.slice(0, 0, batch_size / 2);
        out_ptb = out.slice(0, batch_size / 2, batch_size);
    }

    this->forward(x_org, out_org);
Hyunsung Lee's avatar
Hyunsung Lee committed
132

muyangli's avatar
muyangli committed
133
134
135
136
    Tensor v_ptb = this->pag_to_v.value().forward(x_ptb);
    this->out_proj.forward(v_ptb, out_ptb);

    return out;
Hyunsung Lee's avatar
Hyunsung Lee committed
137
}
muyangli's avatar
muyangli committed
138

Muyang Li's avatar
Muyang Li committed
139
140
141
142
143
144
145
MultiHeadCrossAttention::MultiHeadCrossAttention(
    int num_heads, int head_dim, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : num_heads(num_heads), head_dim(head_dim),
      q_linear(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device),
      kv_linear(num_heads * head_dim, num_heads * head_dim * 2, true, dtype, device),
      out_proj(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device) {
    registerChildren(q_linear, "q_linear")(kv_linear, "kv_linear")(out_proj, "out_proj");
muyangli's avatar
muyangli committed
146
147
148
149
150
151
152
}

Tensor MultiHeadCrossAttention::forward(Tensor x, Tensor cond, Tensor cu_seqlens_img, Tensor cu_seqlens_txt) {
    assert(x.ndims() == 3);
    assert(cond.ndims() == 2);
    assert(cu_seqlens_img.ndims() == 1);
    assert(cu_seqlens_txt.ndims() == 1);
Hyunsung Lee's avatar
Hyunsung Lee committed
153

muyangli's avatar
muyangli committed
154
155
156
157
158
159
160
    const int batch_size     = x.shape[0];
    const int num_tokens_img = x.shape[1];
    const int num_tokens_txt = cond.shape[0];

    assert(cu_seqlens_img.shape[0] == batch_size + 1);
    assert(cu_seqlens_txt.shape[0] == batch_size + 1);

Muyang Li's avatar
Muyang Li committed
161
    Tensor q  = q_linear.forward(x).view({batch_size * num_tokens_img, num_heads, head_dim});
muyangli's avatar
muyangli committed
162
163
164
165
166
    Tensor kv = kv_linear.forward(cond).view({num_tokens_txt, num_heads * 2, head_dim});

    Tensor k = kv.slice(1, 0, num_heads);
    Tensor v = kv.slice(1, num_heads, num_heads * 2);

Muyang Li's avatar
Muyang Li committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    Tensor attn_output = mha_varlen_fwd(q,
                                        k,
                                        v,
                                        cu_seqlens_img,
                                        cu_seqlens_txt,
                                        num_tokens_img,
                                        num_tokens_txt,
                                        0.0f,
                                        pow(q.shape[-1], (-0.5)),
                                        false,
                                        false,
                                        -1,
                                        -1,
                                        false)
                             .front()
                             .view({batch_size, num_tokens_img, num_heads * head_dim});
muyangli's avatar
muyangli committed
183

Hyunsung Lee's avatar
Hyunsung Lee committed
184
185
186
    // Tensor attn_output = mha_fwd(q, k, v,
    //     0.0f,
    //     pow(q.shape[-1], (-0.5)),
muyangli's avatar
muyangli committed
187
188
189
190
191
192
    //     false, -1, -1, false
    // ).front().view({B, N, num_heads * head_dim});

    return out_proj.forward(attn_output);
}

Muyang Li's avatar
Muyang Li committed
193
194
195
196
197
198
199
SanaGLUMBConv::SanaGLUMBConv(
    int in_features, int hidden_features, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), hidden_features(hidden_features),
      inverted_conv(in_features, hidden_features * 2, true, use_fp4, dtype, device),
      depth_conv(hidden_features * 2, true, dtype, device),
      point_conv(hidden_features, in_features, false, use_fp4, dtype, device) {
    registerChildren(inverted_conv, "inverted_conv")(depth_conv, "depth_conv")(point_conv, "point_conv");
muyangli's avatar
muyangli committed
200
201
202
203
204
205
206
207
208
209
210
}

Tensor SanaGLUMBConv::forward(Tensor x, int H, int W) {
    if (H <= 0 || W <= 0) {
        H = W = sqrt(x.shape[1]);
    }
    x = inverted_conv.forward_silu(x);
    x = x.view({x.shape[0], H, W, x.shape[-1]});
    debug("inverted_conv_output", x);
    x = depth_conv.forward(x);
    debug("depth_conv_output", x);
Muyang Li's avatar
Muyang Li committed
211
    x         = x.view({x.shape[0], H * W, x.shape[-1]});
muyangli's avatar
muyangli committed
212
213
214
215
    auto qact = point_conv.quantize(x, true);
    return point_conv.forward_quant(qact);
}

Muyang Li's avatar
Muyang Li committed
216
217
218
219
220
221
222
223
224
225
226
227
SanaLinearTransformerBlock::SanaLinearTransformerBlock(int hidden_size,
                                                       int intermediate_size,
                                                       int num_cross_attention_heads,
                                                       bool pag,
                                                       bool use_fp4,
                                                       Tensor::ScalarType dtype,
                                                       Device device)
    : hidden_size(hidden_size), num_cross_attention_heads(num_cross_attention_heads),
      attn(hidden_size, false, pag, use_fp4, dtype, device),
      cross_attn(num_cross_attention_heads, hidden_size / num_cross_attention_heads, use_fp4, dtype, device),
      ff(hidden_size, intermediate_size, use_fp4, dtype, device), norm1(hidden_size, 1e-6, false, dtype, device),
      norm2(hidden_size, 1e-6, false, dtype, device) {
muyangli's avatar
muyangli committed
228
229
    this->scale_shift_table = Tensor::allocate({6, hidden_size}, dtype, device);

Muyang Li's avatar
Muyang Li committed
230
    registerChildren(attn, "attn")(cross_attn, "cross_attn")(ff, "ff");
muyangli's avatar
muyangli committed
231

Muyang Li's avatar
Muyang Li committed
232
    registerParams(this->scale_shift_table, "scale_shift_table");
muyangli's avatar
muyangli committed
233
234
}

Muyang Li's avatar
Muyang Li committed
235
236
237
238
239
240
241
242
243
Tensor SanaLinearTransformerBlock::forward(Tensor hidden_states,
                                           Tensor encoder_hidden_states,
                                           Tensor timestep,
                                           Tensor cu_seqlens_img,
                                           Tensor cu_seqlens_txt,
                                           int H,
                                           int W,
                                           bool pag,
                                           bool cfg) {
muyangli's avatar
muyangli committed
244

fengzch-das's avatar
fengzch-das committed
245
    nvtxRangePushA("SanaLinearTransformerBlock");
muyangli's avatar
muyangli committed
246

fengzch-das's avatar
fengzch-das committed
247
    nvtxRangePushA("chunk");
muyangli's avatar
muyangli committed
248
249
250
251
252
253
254
255
256
257

    // Tensor ones = Tensor::ones({hidden_size}, Tensor::FP16, x.device());

    const int batch_size = timestep.shape[0];

    timestep = timestep.copy(timestep.device());
    timestep = timestep.view({batch_size, 6, hidden_size});

    kernels::mul_add_batch(timestep, {}, false, 0, this->scale_shift_table, false);
    debug("shifted_timestep", timestep);
Hyunsung Lee's avatar
Hyunsung Lee committed
258

muyangli's avatar
muyangli committed
259
260
261
262
263
264
265
    std::array<Tensor, 6> chunked;
    for (int i = 0; i < 6; i++) {
        chunked[i] = timestep.slice(1, i, i + 1);
    }
    auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = chunked;
    // auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(timestep);

fengzch-das's avatar
fengzch-das committed
266
    nvtxRangePop();
muyangli's avatar
muyangli committed
267
268

    {
fengzch-das's avatar
fengzch-das committed
269
        nvtxRangePushA("LinearAttention");
muyangli's avatar
muyangli committed
270

Muyang Li's avatar
Muyang Li committed
271
        Tensor residual           = hidden_states;
muyangli's avatar
muyangli committed
272
273
274
275
276
277
278
279
280
281
282
        Tensor norm_hidden_states = norm1.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_msa, true, 1, shift_msa, true);
        debug("norm_hidden_states_la", norm_hidden_states);

        Tensor attn_output = pag ? attn.forward_pag(norm_hidden_states, cfg) : attn.forward(norm_hidden_states);
        debug("attn_output_la", attn_output);

        kernels::mul_add_batch(attn_output, gate_msa, true, 0, residual, true);

        hidden_states = attn_output;

fengzch-das's avatar
fengzch-das committed
283
        nvtxRangePop();
muyangli's avatar
muyangli committed
284
285
286
    }

    {
fengzch-das's avatar
fengzch-das committed
287
        nvtxRangePushA("CrossAttention");
muyangli's avatar
muyangli committed
288
289
290
291
292
293
294
295
296

        debug("norm_hidden_states_cross", hidden_states);
        Tensor attn_output = cross_attn.forward(hidden_states, encoder_hidden_states, cu_seqlens_img, cu_seqlens_txt);
        debug("attn_output_cross", attn_output);

        kernels::mul_add_batch(attn_output, {}, false, 0, hidden_states, true);

        hidden_states = attn_output;

fengzch-das's avatar
fengzch-das committed
297
        nvtxRangePop();
muyangli's avatar
muyangli committed
298
299
300
    }

    {
fengzch-das's avatar
fengzch-das committed
301
        nvtxRangePushA("Feed-forward");
muyangli's avatar
muyangli committed
302
303
304
305
306
307
308
309
310
311
312
313
314

        debug("hidden_states_ff", hidden_states);
        Tensor norm_hidden_states = norm2.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_mlp, true, 1, shift_mlp, true);
        debug("norm_hidden_states_ff", norm_hidden_states);

        Tensor ff_output = ff.forward(norm_hidden_states, H, W);
        debug("ff_output", ff_output);

        kernels::mul_add_batch(ff_output, gate_mlp, true, 0, hidden_states, true);

        hidden_states = ff_output;

fengzch-das's avatar
fengzch-das committed
315
        nvtxRangePop();
muyangli's avatar
muyangli committed
316
    }
Hyunsung Lee's avatar
Hyunsung Lee committed
317

fengzch-das's avatar
fengzch-das committed
318
    nvtxRangePop();
muyangli's avatar
muyangli committed
319
320
321
322
323
324

    debug("hidden_states_out", hidden_states);

    return hidden_states;
}

Muyang Li's avatar
Muyang Li committed
325
SanaModel::SanaModel(SanaConfig config, Tensor::ScalarType dtype, Device device) : config(config) {
muyangli's avatar
muyangli committed
326
327
328
329
330
331
332
    const int inner_dim = config.num_attention_heads * config.attention_head_dim;
    for (int i = 0; i < config.num_layers; i++) {
        transformer_blocks.push_back(std::make_unique<SanaLinearTransformerBlock>(
            inner_dim,
            ceilDiv(int(round(config.expand_ratio * inner_dim)), 64) * 64,
            config.num_cross_attention_heads,
            std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
333
            config.use_fp4,
Muyang Li's avatar
Muyang Li committed
334
335
            dtype,
            device));
muyangli's avatar
muyangli committed
336
337
338
339
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
}

Muyang Li's avatar
Muyang Li committed
340
341
342
343
344
345
346
347
348
349
Tensor SanaModel::forward(Tensor hidden_states,
                          Tensor encoder_hidden_states,
                          Tensor timestep,
                          Tensor cu_seqlens_img,
                          Tensor cu_seqlens_txt,
                          int H,
                          int W,
                          bool pag,
                          bool cfg,
                          bool skip_first_layer) {
Hyunsung Lee's avatar
Hyunsung Lee committed
350
    for (int i = (skip_first_layer ? 1 : 0); i < config.num_layers; i++) {
Muyang Li's avatar
Muyang Li committed
351
352
353
354
355
356
357
358
359
360
361
        auto &&block  = transformer_blocks[i];
        hidden_states = block->forward(hidden_states,
                                       encoder_hidden_states,
                                       timestep,
                                       cu_seqlens_img,
                                       cu_seqlens_txt,
                                       H,
                                       W,
                                       pag && std::find(config.pag_layers.begin(), config.pag_layers.end(), i) !=
                                                  config.pag_layers.end(),
                                       cfg);
muyangli's avatar
muyangli committed
362
363
364
    }
    return hidden_states;
}