SanaModel.cpp 11.2 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include "SanaModel.h"
#include "kernels/zgemm/zgemm.h"
#include "flash_api.h"
#include "kernels/misc_kernels.h"

#include <nvtx3/nvToolsExt.h>

using spdlog::fmt_lib::format;
using namespace nunchaku;

SanaLinearAttention::SanaLinearAttention(int dim, bool bias, bool pag, Tensor::ScalarType dtype, Device device) :
    dim(dim),
    dim_pad(ceilDiv(dim, 128) * 128),
    qkv_proj(dim, dim_pad * 3, bias, dtype, device),
    out_proj(dim_pad, dim, bias, dtype, device),
    pag_to_v(std::nullopt)
{
    registerChildren
        (qkv_proj, "qkv_proj")
        (out_proj, "out_proj")
    ;

    if (pag) {
        pag_to_v.emplace(dim, dim_pad, bias, dtype, device);
        registerChildren(pag_to_v.value(), "pag_to_v");
    }
}

Tensor SanaLinearAttention::forward(Tensor x, Tensor out) {
    constexpr int HEAD_DIM = 32;
    
    assert(x.ndims() == 3);
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];
    const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;
    assert(x.shape[2] == dim);

    const int num_heads = dim_pad / HEAD_DIM;

    if (num_tokens_pad != num_tokens) {
        spdlog::debug("SanaLinearAttention: pad num_tokens from {} to {}", num_tokens, num_tokens_pad);

        Tensor x_pad = Tensor::allocate({batch_size, num_tokens_pad, dim}, x.dtype(), x.device());
        x_pad.zero_();
        for (int i = 0; i < batch_size; i++) {
            x_pad.slice(0, i, i + 1).slice(1, 0, num_tokens).copy_(x.slice(0, i, i + 1));
        }
        
        x = x_pad;
    }

    auto qact = qkv_proj.quantize(x, false);

    Tensor q = Tensor::allocate({batch_size, num_tokens_pad, dim_pad}, x.dtype(), x.device());
    Tensor vk = Tensor::allocate({batch_size, num_heads, HEAD_DIM + 1, HEAD_DIM}, Tensor::FP32, x.device());

    kernels::gemm_w4a4(
        qact.act, 
        qkv_proj.qweight, 
        {}, 
        {}, 
        qact.ascales, 
        qkv_proj.wscales, 
        {}, {}, qact.lora_act, qkv_proj.lora_up, {}, {}, {}, {}, {}, qkv_proj.bias, {}, 
        vk, q, 
        qact.is_unsigned, qkv_proj.lora_scales, false);

    debug("vk", vk);
    debug("q", q);

    kernels::linearattn_vk_mul_q(q, vk);

    debug("raw_attn_output", q);

    if (num_tokens_pad != num_tokens) {
        Tensor q_unpad = Tensor::allocate({batch_size, num_tokens, dim_pad}, q.dtype(), q.device());
        for (int i = 0; i < batch_size; i++) {
            q_unpad.slice(0, i, i + 1).copy_(q.slice(0, i, i + 1).slice(1, 0, num_tokens));
        }
        q = q_unpad;
    }


    // kernels::gemm_w8a8_fuse_litela(qact.act, qkv.qweight, q, vk, qact.ascales, qkv.wscales);

    // return out_proj.forward(q);
    if (!out.valid()) {
        out = Tensor::allocate({batch_size, num_tokens, dim}, q.dtype(), q.device());
    }
    out_proj.forward(q, out);
    return out;
}

Tensor SanaLinearAttention::forward_pag(Tensor x, bool cfg) {
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];

    Tensor out = Tensor::allocate({batch_size, num_tokens, dim}, x.dtype(), x.device());
    Tensor x_org, x_ptb;
    Tensor out_org, out_ptb;

    if (cfg) {
        assert(batch_size % 3 == 0);
        x_org = x.slice(0, 0, batch_size * 2 / 3);
        x_ptb = x.slice(0, batch_size * 2 / 3, batch_size);
        out_org = out.slice(0, 0, batch_size * 2 / 3);
        out_ptb = out.slice(0, batch_size * 2 / 3, batch_size);
    } else {
        assert(batch_size % 2 == 0);
        x_org = x.slice(0, 0, batch_size / 2);
        x_ptb = x.slice(0, batch_size / 2, batch_size);
        out_org = out.slice(0, 0, batch_size / 2);
        out_ptb = out.slice(0, batch_size / 2, batch_size);
    }

    this->forward(x_org, out_org);
    
    Tensor v_ptb = this->pag_to_v.value().forward(x_ptb);
    this->out_proj.forward(v_ptb, out_ptb);

    return out;
}   

MultiHeadCrossAttention::MultiHeadCrossAttention(int num_heads, int head_dim, Tensor::ScalarType dtype, Device device) :
    num_heads(num_heads), head_dim(head_dim),
    q_linear(num_heads * head_dim, num_heads * head_dim, true, dtype, device),
    kv_linear(num_heads * head_dim, num_heads * head_dim * 2, true, dtype, device),
    out_proj(num_heads * head_dim, num_heads * head_dim, true, dtype, device)
{
    registerChildren
        (q_linear, "q_linear")
        (kv_linear, "kv_linear")
        (out_proj, "out_proj")
    ;
}

Tensor MultiHeadCrossAttention::forward(Tensor x, Tensor cond, Tensor cu_seqlens_img, Tensor cu_seqlens_txt) {
    assert(x.ndims() == 3);
    assert(cond.ndims() == 2);
    assert(cu_seqlens_img.ndims() == 1);
    assert(cu_seqlens_txt.ndims() == 1);
    
    const int batch_size     = x.shape[0];
    const int num_tokens_img = x.shape[1];
    const int num_tokens_txt = cond.shape[0];

    assert(cu_seqlens_img.shape[0] == batch_size + 1);
    assert(cu_seqlens_txt.shape[0] == batch_size + 1);

    Tensor q = q_linear.forward(x).view({batch_size * num_tokens_img, num_heads, head_dim});
    Tensor kv = kv_linear.forward(cond).view({num_tokens_txt, num_heads * 2, head_dim});

    Tensor k = kv.slice(1, 0, num_heads);
    Tensor v = kv.slice(1, num_heads, num_heads * 2);

    Tensor attn_output = mha_varlen_fwd(
        q, k, v,
        cu_seqlens_img, cu_seqlens_txt,
        num_tokens_img, num_tokens_txt,
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false, false, 
        -1, -1,
        false
    ).front().view({batch_size, num_tokens_img, num_heads * head_dim});

    // Tensor attn_output = mha_fwd(q, k, v, 
    //     0.0f, 
    //     pow(q.shape[-1], (-0.5)), 
    //     false, -1, -1, false
    // ).front().view({B, N, num_heads * head_dim});

    return out_proj.forward(attn_output);
}

SanaGLUMBConv::SanaGLUMBConv(int in_features, int hidden_features, Tensor::ScalarType dtype, Device device) : 
    in_features(in_features), hidden_features(hidden_features),
    inverted_conv(in_features, hidden_features * 2, true, dtype, device),
    depth_conv(hidden_features * 2, true, dtype, device),
    point_conv(hidden_features, in_features, false, dtype, device)
{
    registerChildren
        (inverted_conv, "inverted_conv")
        (depth_conv, "depth_conv")
        (point_conv, "point_conv")
    ;
}

Tensor SanaGLUMBConv::forward(Tensor x, int H, int W) {
    if (H <= 0 || W <= 0) {
        H = W = sqrt(x.shape[1]);
    }
    x = inverted_conv.forward_silu(x);
    x = x.view({x.shape[0], H, W, x.shape[-1]});
    debug("inverted_conv_output", x);
    x = depth_conv.forward(x);
    debug("depth_conv_output", x);
    x = x.view({x.shape[0], H * W, x.shape[-1]});
    auto qact = point_conv.quantize(x, true);
    return point_conv.forward_quant(qact);
}

SanaLinearTransformerBlock::SanaLinearTransformerBlock(int hidden_size, int intermediate_size, int num_cross_attention_heads, bool pag, Tensor::ScalarType dtype, Device device) : 
    hidden_size(hidden_size), num_cross_attention_heads(num_cross_attention_heads),
    attn(hidden_size, false, pag, dtype, device),
    cross_attn(num_cross_attention_heads, hidden_size / num_cross_attention_heads, dtype, device),
    ff(hidden_size, intermediate_size, dtype, device),
    norm1(hidden_size, 1e-6, false, dtype, device),
    norm2(hidden_size, 1e-6, false, dtype, device)
{
    this->scale_shift_table = Tensor::allocate({6, hidden_size}, dtype, device);

    registerChildren
        (attn, "attn")
        (cross_attn, "cross_attn")
        (ff, "ff")
    ;

    registerParams
        (this->scale_shift_table, "scale_shift_table")
    ;
}

Tensor SanaLinearTransformerBlock::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg) {

    nvtxRangePushA("SanaLinearTransformerBlock");

    nvtxRangePushA("chunk");

    // Tensor ones = Tensor::ones({hidden_size}, Tensor::FP16, x.device());

    const int batch_size = timestep.shape[0];

    timestep = timestep.copy(timestep.device());
    timestep = timestep.view({batch_size, 6, hidden_size});

    kernels::mul_add_batch(timestep, {}, false, 0, this->scale_shift_table, false);
    debug("shifted_timestep", timestep);
    
    std::array<Tensor, 6> chunked;
    for (int i = 0; i < 6; i++) {
        chunked[i] = timestep.slice(1, i, i + 1);
    }
    auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = chunked;
    // auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(timestep);

    nvtxRangePop();

    {
        nvtxRangePushA("LinearAttention");

        Tensor residual = hidden_states;
        Tensor norm_hidden_states = norm1.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_msa, true, 1, shift_msa, true);
        debug("norm_hidden_states_la", norm_hidden_states);

        Tensor attn_output = pag ? attn.forward_pag(norm_hidden_states, cfg) : attn.forward(norm_hidden_states);
        debug("attn_output_la", attn_output);

        kernels::mul_add_batch(attn_output, gate_msa, true, 0, residual, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("CrossAttention");

        debug("norm_hidden_states_cross", hidden_states);
        Tensor attn_output = cross_attn.forward(hidden_states, encoder_hidden_states, cu_seqlens_img, cu_seqlens_txt);
        debug("attn_output_cross", attn_output);

        kernels::mul_add_batch(attn_output, {}, false, 0, hidden_states, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("Feed-forward");

        debug("hidden_states_ff", hidden_states);
        Tensor norm_hidden_states = norm2.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_mlp, true, 1, shift_mlp, true);
        debug("norm_hidden_states_ff", norm_hidden_states);

        Tensor ff_output = ff.forward(norm_hidden_states, H, W);
        debug("ff_output", ff_output);

        kernels::mul_add_batch(ff_output, gate_mlp, true, 0, hidden_states, true);

        hidden_states = ff_output;

        nvtxRangePop();
    }
    
    nvtxRangePop();

    debug("hidden_states_out", hidden_states);

    return hidden_states;
}

SanaModel::SanaModel(SanaConfig config, Tensor::ScalarType dtype, Device device) : 
    config(config)
{
    const int inner_dim = config.num_attention_heads * config.attention_head_dim;
    for (int i = 0; i < config.num_layers; i++) {
        transformer_blocks.push_back(std::make_unique<SanaLinearTransformerBlock>(
            inner_dim,
            ceilDiv(int(round(config.expand_ratio * inner_dim)), 64) * 64,
            config.num_cross_attention_heads,
            std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
            dtype, device
        ));
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
}

Tensor SanaModel::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg) {
    for (int i = 0; i < config.num_layers; i++) {
        auto &&block = transformer_blocks[i];
        hidden_states = block->forward(
            hidden_states, encoder_hidden_states, timestep, cu_seqlens_img, cu_seqlens_txt, H, W,
            pag && std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
            cfg
        );
    }
    return hidden_states;
}