README.md 23.4 KB
Newer Older
muyangli's avatar
muyangli committed
1
<div align="center" id="nunchaku_logo">
muyangli's avatar
muyangli committed
2
  <img src="https://raw.githubusercontent.com/mit-han-lab/nunchaku/477953fa1dd6f082fbec201cea7c7430117a810e/assets/nunchaku.svg" alt="logo" width="220"></img>
muyangli's avatar
muyangli committed
3
</div>
4
<h3 align="center">
5
<a href="http://arxiv.org/abs/2411.05007"><b>Paper</b></a> | <a href="https://hanlab.mit.edu/projects/svdquant"><b>Website</b></a> | <a href="https://hanlab.mit.edu/blog/svdquant"><b>Blog</b></a> | <a href="https://svdquant.mit.edu"><b>Demo</b></a> | <a href="https://huggingface.co/collections/mit-han-lab/nunchaku-6837e7498f680552f7bbb5ad"><b>HuggingFace</b></a> | <a href="https://modelscope.cn/collections/Nunchaku-519fed7f9de94e"><b>ModelScope</b></a> | <a href="https://github.com/mit-han-lab/ComfyUI-nunchaku"><b>ComfyUI</b></a>
6
</h3>
7

Muyang Li's avatar
Muyang Li committed
8
<h3 align="center">
muyangli's avatar
muyangli committed
9
<a href="README.md"><b>English</b></a> | <a href="README_ZH.md"><b>中文</b></a>
Shiqi Fang's avatar
Shiqi Fang committed
10
</h3>
11

12
**Nunchaku** is a high-performance inference engine optimized for 4-bit neural networks, as introduced in our paper [SVDQuant](http://arxiv.org/abs/2411.05007). For the underlying quantization library, check out [DeepCompressor](https://github.com/mit-han-lab/deepcompressor).
Muyang Li's avatar
Muyang Li committed
13

14
Join our user groups on [**Slack**](https://join.slack.com/t/nunchaku/shared_invite/zt-3170agzoz-NgZzWaTrEj~n2KEV3Hpl5Q), [**Discord**](https://discord.gg/Wk6PnwX9Sm) and [**WeChat**](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/wechat.jpg) to engage in discussions with the community! More details can be found [here](https://github.com/mit-han-lab/nunchaku/issues/149). If you have any questions, run into issues, or are interested in contributing, don’t hesitate to reach out!
muyangli's avatar
muyangli committed
15

muyangli's avatar
muyangli committed
16
## News
Zhekai Zhang's avatar
Zhekai Zhang committed
17

muyangli's avatar
muyangli committed
18
- **[2025-04-16]** 🎥 Released tutorial videos in both [**English**](https://youtu.be/YHAVe-oM7U8?si=cM9zaby_aEHiFXk0) and [**Chinese**](https://www.bilibili.com/video/BV1BTocYjEk5/?share_source=copy_web&vd_source=8926212fef622f25cc95380515ac74ee) to assist installation and usage.
muyangli's avatar
muyangli committed
19
- **[2025-04-09]** 📢 Published the [April roadmap](https://github.com/mit-han-lab/nunchaku/issues/266) and an [FAQ](https://github.com/mit-han-lab/nunchaku/discussions/262) to help the community get started and stay up to date with Nunchaku’s development.
20
- **[2025-04-05]** 🚀 **Nunchaku v0.2.0 released!** This release brings [**multi-LoRA**](examples/flux.1-dev-multiple-lora.py) and [**ControlNet**](examples/flux.1-dev-controlnet-union-pro.py) support with even faster performance powered by [**FP16 attention**](#fp16-attention) and [**First-Block Cache**](#first-block-cache). We've also added compatibility for [**20-series GPUs**](examples/flux.1-dev-turing.py) — Nunchaku is now more accessible than ever!
muyangli's avatar
muyangli committed
21
- **[2025-03-07]** 🚀 **Nunchaku v0.1.4 Released!** We've supported [4-bit text encoder and per-layer CPU offloading](#Low-Memory-Inference), reducing FLUX's minimum memory requirement to just **4 GiB** while maintaining a **2–3× speedup**. This update also fixes various issues related to resolution, LoRA, pin memory, and runtime stability. Check out the release notes for full details!
22
- **[2025-02-20]** 🚀 **Support NVFP4 precision on NVIDIA RTX 5090!** NVFP4 delivers superior image quality compared to INT4, offering **~3× speedup** on the RTX 5090 over BF16. Learn more in our [blog](https://hanlab.mit.edu/blog/svdquant-nvfp4), checkout [`examples`](./examples) for usage and try [our demo](https://svdquant.mit.edu/flux1-schnell/) online!
muyangli's avatar
muyangli committed
23
- **[2025-02-18]** 🔥 [**Customized LoRA conversion**](#Customized-LoRA) and [**model quantization**](#Customized-Model-Quantization) instructions are now available! **[ComfyUI](./comfyui)** workflows now support **customized LoRA**, along with **FLUX.1-Tools**!
muyangli's avatar
muyangli committed
24
- **[2025-02-11]** 🎉 **[SVDQuant](http://arxiv.org/abs/2411.05007) has been selected as a ICLR 2025 Spotlight! FLUX.1-tools Gradio demos are now available!** Check [here](#gradio-demos) for the usage details! Our new [depth-to-image demo](https://svdquant.mit.edu/flux1-depth-dev/) is also online—try it out!
Muyang Li's avatar
Muyang Li committed
25

26
27
<details>
<summary>More</summary>
28

Muyang Li's avatar
Muyang Li committed
29
- **[2025-02-04]** **🚀 4-bit [FLUX.1-tools](https://blackforestlabs.ai/flux-1-tools/) is here!** Enjoy a **2-3× speedup** over the original models. Check out the [examples](./examples) for usage. **ComfyUI integration is coming soon!**
30
- **[2025-01-23]** 🚀 **4-bit [SANA](https://nvlabs.github.io/Sana/) support is here!** Experience a 2-3× speedup compared to the 16-bit model. Check out the [usage example](examples/sana1.6b_pag.py) and the [deployment guide](app/sana/t2i) for more details. Explore our live demo at [svdquant.mit.edu](https://svdquant.mit.edu)!
muyangli's avatar
muyangli committed
31
- **[2025-01-22]** 🎉 [**SVDQuant**](http://arxiv.org/abs/2411.05007) has been accepted to **ICLR 2025**!
32
- **[2024-12-08]** Support [ComfyUI](https://github.com/comfyanonymous/ComfyUI). Please check [mit-han-lab/ComfyUI-nunchaku](https://github.com/mit-han-lab/ComfyUI-nunchaku) for the usage.
muyangli's avatar
muyangli committed
33
- **[2024-11-07]** 🔥 Our latest **W4A4** Diffusion model quantization work [**SVDQuant**](https://hanlab.mit.edu/projects/svdquant) is publicly released! Check [**DeepCompressor**](https://github.com/mit-han-lab/deepcompressor) for the quantization library.
Zhekai Zhang's avatar
Zhekai Zhang committed
34

35
36
</details>

muyangli's avatar
muyangli committed
37
38
## Overview

39
![teaser](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/teaser.jpg)
Zhekai Zhang's avatar
Zhekai Zhang committed
40
41
SVDQuant is a post-training quantization technique for 4-bit weights and activations that well maintains visual fidelity. On 12B FLUX.1-dev, it achieves 3.6× memory reduction compared to the BF16 model. By eliminating CPU offloading, it offers 8.7× speedup over the 16-bit model when on a 16GB laptop 4090 GPU, 3× faster than the NF4 W4A16 baseline. On PixArt-∑, it demonstrates significantly superior visual quality over other W4A4 or even W4A8 baselines. "E2E" means the end-to-end latency including the text encoder and VAE decoder.

Muyang Li's avatar
Muyang Li committed
42
**SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models**<br>
43
[Muyang Li](https://lmxyy.me)\*, [Yujun Lin](https://yujunlin.com)\*, [Zhekai Zhang](https://hanlab.mit.edu/team/zhekai-zhang)\*, [Tianle Cai](https://www.tianle.website/#/), [Xiuyu Li](https://xiuyuli.com), [Junxian Guo](https://github.com/JerryGJX), [Enze Xie](https://xieenze.github.io), [Chenlin Meng](https://cs.stanford.edu/~chenlin/), [Jun-Yan Zhu](https://www.cs.cmu.edu/~junyanz/), and [Song Han](https://hanlab.mit.edu/songhan) <br>
Zhekai Zhang's avatar
Zhekai Zhang committed
44
45
*MIT, NVIDIA, CMU, Princeton, UC Berkeley, SJTU, and Pika Labs* <br>

46
https://github.com/user-attachments/assets/fdd4ab68-6489-4c65-8768-259bd866e8f8
Muyang Li's avatar
Muyang Li committed
47
48

## Method
Zhekai Zhang's avatar
Zhekai Zhang committed
49
50
51

#### Quantization Method -- SVDQuant

52
![intuition](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/intuition.gif)Overview of SVDQuant. Stage1: Originally, both the activation $\\boldsymbol{X}$ and weights $\\boldsymbol{W}$ contain outliers, making 4-bit quantization challenging. Stage 2: We migrate the outliers from activations to weights, resulting in the updated activation $\\hat{\\boldsymbol{X}}$ and weights $\\hat{\\boldsymbol{W}}$. While $\\hat{\\boldsymbol{X}}$ becomes easier to quantize, $\\hat{\\boldsymbol{W}}$ now becomes more difficult. Stage 3: SVDQuant further decomposes $\\hat{\\boldsymbol{W}}$ into a low-rank component $\\boldsymbol{L}\_1\\boldsymbol{L}\_2$ and a residual $\\hat{\\boldsymbol{W}}-\\boldsymbol{L}\_1\\boldsymbol{L}\_2$ with SVD. Thus, the quantization difficulty is alleviated by the low-rank branch, which runs at 16-bit precision.
Zhekai Zhang's avatar
Zhekai Zhang committed
53
54
55

#### Nunchaku Engine Design

56
![engine](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/engine.jpg) (a) Naïvely running low-rank branch with rank 32 will introduce 57% latency overhead due to extra read of 16-bit inputs in *Down Projection* and extra write of 16-bit outputs in *Up Projection*. Nunchaku optimizes this overhead with kernel fusion. (b) *Down Projection* and *Quantize* kernels use the same input, while *Up Projection* and *4-Bit Compute* kernels share the same output. To reduce data movement overhead, we fuse the first two and the latter two kernels together.
Zhekai Zhang's avatar
Zhekai Zhang committed
57
58
59

## Performance

60
![efficiency](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/efficiency.jpg)SVDQuant reduces the 12B FLUX.1 model size by 3.6× and cuts the 16-bit model's memory usage by 3.5×. With Nunchaku, our INT4 model runs 3.0× faster than the NF4 W4A16 baseline on both desktop and laptop NVIDIA RTX 4090 GPUs. Notably, on the laptop 4090, it achieves a total 10.1× speedup by eliminating CPU offloading. Our NVFP4 model is also 3.1× faster than both BF16 and NF4 on the RTX 5090 GPU.
Zhekai Zhang's avatar
Zhekai Zhang committed
61
62

## Installation
63

muyangli's avatar
muyangli committed
64
We provide tutorial videos to help you install and use Nunchaku on Windows, available in both [**English**](https://youtu.be/YHAVe-oM7U8?si=cM9zaby_aEHiFXk0) and [**Chinese**](https://www.bilibili.com/video/BV1BTocYjEk5/?share_source=copy_web&vd_source=8926212fef622f25cc95380515ac74ee). You can also follow the corresponding step-by-step text guide at [`docs/setup_windows.md`](docs/setup_windows.md). If you run into issues, these resources are a good place to start.
Muyang Li's avatar
Muyang Li committed
65

66
67
### Wheels

Muyang Li's avatar
Muyang Li committed
68
#### Prerequisites
69

70
Before installation, ensure you have [PyTorch>=2.5](https://pytorch.org/) installed. For example, you can use the following command to install PyTorch 2.6:
muyangli's avatar
update  
muyangli committed
71
72
73
74
75

```shell
pip install torch==2.6 torchvision==0.21 torchaudio==2.6
```

Muyang Li's avatar
Muyang Li committed
76
#### Install nunchaku
77

muyangli's avatar
muyangli committed
78
Once PyTorch is installed, you can directly install `nunchaku` from [Hugging Face](https://huggingface.co/mit-han-lab/nunchaku/tree/main), [ModelScope](https://modelscope.cn/models/Lmxyy1999/nunchaku) or [GitHub release](https://github.com/mit-han-lab/nunchaku/releases). Be sure to select the appropriate wheel for your Python and PyTorch version. For example, for Python 3.11 and PyTorch 2.6:
muyangli's avatar
update  
muyangli committed
79
80

```shell
Muyang Li's avatar
Muyang Li committed
81
pip install https://huggingface.co/mit-han-lab/nunchaku/resolve/main/nunchaku-0.2.0+torch2.6-cp311-cp311-linux_x86_64.whl
muyangli's avatar
update  
muyangli committed
82
83
```

muyangli's avatar
muyangli committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
##### For ComfyUI Users

If you're using the **ComfyUI portable package**, make sure to install `nunchaku` into the correct Python environment bundled with ComfyUI. To find the right Python path, launch ComfyUI and check the log output. You'll see something like this in the first several lines:

```text
** Python executable: G:\ComfyuI\python\python.exe
```

Use that Python executable to install `nunchaku`:

```shell
"G:\ComfyUI\python\python.exe" -m pip install <your-wheel-file>.whl
```

**Example:** Installing for Python 3.11 and PyTorch 2.6:

```shell
"G:\ComfyUI\python\python.exe" -m pip install https://github.com/mit-han-lab/nunchaku/releases/download/v0.2.0/nunchaku-0.2.0+torch2.6-cp311-cp311-linux_x86_64.whl
```

##### For Blackwell GPUs (50-series)

If you're using a Blackwell GPU (e.g., 50-series GPUs), install a wheel with PyTorch 2.7 and higher. Additionally, use **FP4 models** instead of INT4 models."
muyangli's avatar
update  
muyangli committed
107

108
109
### Build from Source

Muyang Li's avatar
Muyang Li committed
110
111
**Note**:

112
- Make sure your CUDA version is **at least 12.2 on Linux** and **at least 12.6 on Windows**. If you're using a Blackwell GPU (e.g., 50-series GPUs), CUDA **12.8 or higher is required**.
muyangli's avatar
muyangli committed
113

114
- For Windows users, please refer to [this issue](https://github.com/mit-han-lab/nunchaku/issues/6) for the instruction. Please upgrade your MSVC compiler to the latest version.
Muyang Li's avatar
Muyang Li committed
115

116
- We currently support only NVIDIA GPUs with architectures sm_75 (Turing: RTX 2080), sm_86 (Ampere: RTX 3090, A6000), sm_89 (Ada: RTX 4090), and sm_80 (A100). See [this issue](https://github.com/mit-han-lab/nunchaku/issues/1) for more details.
Muyang Li's avatar
Muyang Li committed
117

Zhekai Zhang's avatar
Zhekai Zhang committed
118
1. Install dependencies:
muyangli's avatar
update  
muyangli committed
119

Muyang Li's avatar
Muyang Li committed
120
121
122
123
124
   ```shell
   conda create -n nunchaku python=3.11
   conda activate nunchaku
   pip install torch torchvision torchaudio
   pip install ninja wheel diffusers transformers accelerate sentencepiece protobuf huggingface_hub
Muyang Li's avatar
Muyang Li committed
125

Muyang Li's avatar
Muyang Li committed
126
   # For gradio demos
muyangli's avatar
muyangli committed
127
   pip install peft opencv-python gradio spaces GPUtil
Muyang Li's avatar
Muyang Li committed
128
129
   ```

muyangli's avatar
muyangli committed
130
   To enable NVFP4 on Blackwell GPUs (e.g., 50-series GPUs), please install nightly PyTorch>=2.7 with CUDA>=12.8. The installation command can be:
muyangli's avatar
update  
muyangli committed
131

Muyang Li's avatar
Muyang Li committed
132
   ```shell
muyangli's avatar
muyangli committed
133
   pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
Muyang Li's avatar
Muyang Li committed
134
   ```
muyangli's avatar
update  
muyangli committed
135

136
137
1. Install `nunchaku` package:
   Make sure you have `gcc/g++>=11`. If you don't, you can install it via Conda on Linux:
muyangli's avatar
update  
muyangli committed
138

139
140
141
   ```shell
   conda install -c conda-forge gxx=11 gcc=11
   ```
muyangli's avatar
update  
muyangli committed
142

143
   For Windows users, you can download and install the latest [Visual Studio](https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false).
Muyang Li's avatar
Muyang Li committed
144

145
   Then build the package from source with
Muyang Li's avatar
Muyang Li committed
146

147
148
149
150
151
152
153
   ```shell
   git clone https://github.com/mit-han-lab/nunchaku.git
   cd nunchaku
   git submodule init
   git submodule update
   python setup.py develop
   ```
Muyang Li's avatar
Muyang Li committed
154

155
   If you are building wheels for distribution, use:
Muyang Li's avatar
Muyang Li committed
156

157
158
159
   ```shell
   NUNCHAKU_INSTALL_MODE=ALL NUNCHAKU_BUILD_WHEELS=1 python -m build --wheel --no-isolation
   ```
Muyang Li's avatar
Muyang Li committed
160

161
   Make sure to set the environment variable `NUNCHAKU_INSTALL_MODE` to `ALL`. Otherwise, the generated wheels will only work on GPUs with the same architecture as the build machine.
Muyang Li's avatar
Muyang Li committed
162

Zhekai Zhang's avatar
Zhekai Zhang committed
163
164
## Usage Example

165
In [examples](examples), we provide minimal scripts for running INT4 [FLUX.1](https://github.com/black-forest-labs/flux) and [SANA](https://github.com/NVlabs/Sana) models with Nunchaku. It shares the same APIs as [diffusers](https://github.com/huggingface/diffusers) and can be used in a similar way. For example, the [script](examples/flux.1-dev.py) for [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) is as follows:
Zhekai Zhang's avatar
Zhekai Zhang committed
166
167
168

```python
import torch
169
from diffusers import FluxPipeline
Zhekai Zhang's avatar
Zhekai Zhang committed
170

muyangli's avatar
muyangli committed
171
from nunchaku import NunchakuFluxTransformer2dModel
Muyang Li's avatar
Muyang Li committed
172
from nunchaku.utils import get_precision
Zhekai Zhang's avatar
Zhekai Zhang committed
173

Muyang Li's avatar
Muyang Li committed
174
175
precision = get_precision()  # auto-detect your precision is 'int4' or 'fp4' based on your GPU
transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev")
176
pipeline = FluxPipeline.from_pretrained(
muyangli's avatar
muyangli committed
177
    "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
Zhekai Zhang's avatar
Zhekai Zhang committed
178
).to("cuda")
muyangli's avatar
muyangli committed
179
image = pipeline("A cat holding a sign that says hello world", num_inference_steps=50, guidance_scale=3.5).images[0]
Muyang Li's avatar
Muyang Li committed
180
image.save(f"flux.1-dev-{precision}.png")
Zhekai Zhang's avatar
Zhekai Zhang committed
181
182
```

183
**Note**: If you're using a **Turing GPU (e.g., NVIDIA 20-series)**, make sure to set `torch_dtype=torch.float16` and use our `nunchaku-fp16` attention module as below. A complete example is available in [`examples/flux.1-dev-turing.py`](examples/flux.1-dev-turing.py).
Zhekai Zhang's avatar
Zhekai Zhang committed
184

185
### FP16 Attention
Muyang Li's avatar
Muyang Li committed
186

187
In addition to FlashAttention-2, Nunchaku introduces a custom FP16 attention implementation that achieves up to **1.2× faster performance** on NVIDIA 30-, 40-, and even 50-series GPUs—without loss in precision. To enable it, simply use:
Muyang Li's avatar
Muyang Li committed
188

189
190
191
```python
transformer.set_attention_impl("nunchaku-fp16")
```
muyangli's avatar
muyangli committed
192

193
194
195
See [`examples/flux.1-dev-fp16attn.py`](examples/flux.1-dev-fp16attn.py) for a complete example.

### First-Block Cache
Muyang Li's avatar
Muyang Li committed
196

197
Nunchaku supports [First-Block Cache](https://github.com/chengzeyi/ParaAttention?tab=readme-ov-file#first-block-cache-our-dynamic-caching) to accelerate long-step denoising. Enable it easily with:
muyangli's avatar
muyangli committed
198
199

```python
200
201
apply_cache_on_pipe(pipeline, residual_diff_threshold=0.12)
```
muyangli's avatar
muyangli committed
202

203
You can tune the `residual_diff_threshold` to balance speed and quality: larger values yield faster inference at the cost of some quality. A recommended value is `0.12`, which provides up to **2× speedup** for 50-step denoising and **1.4× speedup** for 30-step denoising. See the full example in [`examples/flux.1-dev-cache.py`](examples/flux.1-dev-cache.py).
muyangli's avatar
muyangli committed
204

205
206
207
208
209
210
### CPU Offloading

To minimize GPU memory usage, Nunchaku supports CPU offloading—requiring as little as **4 GiB** of GPU memory. You can enable it by setting `offload=True` when initializing `NunchakuFluxTransformer2dModel`, and then calling:

```python
pipeline.enable_sequential_cpu_offload()
muyangli's avatar
muyangli committed
211
212
```

213
For a complete example, refer to [`examples/flux.1-dev-offload.py`](examples/flux.1-dev-offload.py).
Muyang Li's avatar
Muyang Li committed
214

215
216
## Customized LoRA

217
![lora](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/lora.jpg)
218

219
[SVDQuant](http://arxiv.org/abs/2411.05007) seamlessly integrates with off-the-shelf LoRAs without requiring requantization. You can simply use your LoRA with:
220
221

```python
Muyang Li's avatar
Muyang Li committed
222
transformer.update_lora_params(path_to_your_lora)
223
224
225
transformer.set_lora_strength(lora_strength)
```

226
`path_to_your_lora` can also be a remote HuggingFace path. In [`examples/flux.1-dev-lora.py`](examples/flux.1-dev-lora.py), we provide a minimal example script for running [Ghibsky](https://huggingface.co/aleksa-codes/flux-ghibsky-illustration) LoRA with SVDQuant's 4-bit FLUX.1-dev:
227
228
229
230
231

```python
import torch
from diffusers import FluxPipeline

muyangli's avatar
muyangli committed
232
from nunchaku import NunchakuFluxTransformer2dModel
233
from nunchaku.utils import get_precision
234

235
236
precision = get_precision()  # auto-detect your precision is 'int4' or 'fp4' based on your GPU
transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev")
237
238
239
240
241
242
pipeline = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")

### LoRA Related Code ###
transformer.update_lora_params(
243
244
    "aleksa-codes/flux-ghibsky-illustration/lora.safetensors"
)  # Path to your LoRA safetensors, can also be a remote HuggingFace path
245
246
247
248
transformer.set_lora_strength(1)  # Your LoRA strength here
### End of LoRA Related Code ###

image = pipeline(
249
    "GHIBSKY style, cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows",  # noqa: E501
250
251
252
    num_inference_steps=25,
    guidance_scale=3.5,
).images[0]
253
image.save(f"flux.1-dev-ghibsky-{precision}.png")
254
255
```

Muyang Li's avatar
Muyang Li committed
256
To compose multiple LoRAs, you can use `nunchaku.lora.flux.compose.compose_lora` to compose them. The usage is
257
258
259
260
261
262
263
264
265
266
267
268
269
270

```python
composed_lora = compose_lora(
    [
        ("PATH_OR_STATE_DICT_OF_LORA1", lora_strength1),
        ("PATH_OR_STATE_DICT_OF_LORA2", lora_strength2),
        # Add more LoRAs as needed
    ]
)  # set your lora strengths here when using composed lora
transformer.update_lora_params(composed_lora)
```

You can specify individual strengths for each LoRA in the list. For a complete example, refer to [`examples/flux.1-dev-multiple-lora.py`](examples/flux.1-dev-multiple-lora.py).

Muyang Li's avatar
Muyang Li committed
271
**For ComfyUI users, you can directly use our LoRA loader. The converted LoRA is deprecated. Please refer to [mit-han-lab/ComfyUI-nunchaku](https://github.com/mit-han-lab/ComfyUI-nunchaku) for more details.**
272

273
274
275
276
## ControlNets

Nunchaku supports both the [FLUX.1-tools](https://blackforestlabs.ai/flux-1-tools/) and the [FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro) models. Example scripts can be found in the [`examples`](examples) directory.

277
![control](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/control.jpg)
278

279
280
## ComfyUI

281
Please refer to [mit-han-lab/ComfyUI-nunchaku](https://github.com/mit-han-lab/ComfyUI-nunchaku) for the usage in [ComfyUI](https://github.com/comfyanonymous/ComfyUI).
282

Zhekai Zhang's avatar
Zhekai Zhang committed
283
284
## Gradio Demos

285
286
287
288
289
290
291
292
- FLUX.1 Models
  - Text-to-image: see [`app/flux.1/t2i`](app/flux.1/t2i).
  - Sketch-to-Image ([pix2pix-Turbo](https://github.com/GaParmar/img2img-turbo)): see [`app/flux.1/sketch`](app/flux.1/sketch).
  - Depth/Canny-to-Image ([FLUX.1-tools](https://blackforestlabs.ai/flux-1-tools/)): see [`app/flux.1/depth_canny`](app/flux.1/depth_canny).
  - Inpainting ([FLUX.1-Fill-dev](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev)): see [`app/flux.1/fill`](app/flux.1/fill).
  - Redux ([FLUX.1-Redux-dev](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev)): see [`app/flux.1/redux`](app/flux.1/redux).
- SANA:
  - Text-to-image: see [`app/sana/t2i`](app/sana/t2i).
muyangli's avatar
muyangli committed
293

294
295
## Customized Model Quantization

Muyang Li's avatar
Muyang Li committed
296
Please refer to [mit-han-lab/deepcompressor](https://github.com/mit-han-lab/deepcompressor/tree/main/examples/diffusion). A simpler workflow is coming soon.
297

Zhekai Zhang's avatar
Zhekai Zhang committed
298
299
## Benchmark

muyangli's avatar
muyangli committed
300
Please refer to [app/flux/t2i/README.md](app/flux/t2i/README.md) for instructions on reproducing our paper's quality results and benchmarking inference latency on FLUX.1 models.
Zhekai Zhang's avatar
Zhekai Zhang committed
301

Muyang Li's avatar
Muyang Li committed
302
303
## Roadmap

muyangli's avatar
muyangli committed
304
Please check [here](https://github.com/mit-han-lab/nunchaku/issues/266) for the roadmap for April.
Muyang Li's avatar
Muyang Li committed
305

306
## Contribution
307

308
309
We warmly welcome contributions from the community! To get started, please refer to our [contribution guide](docs/contribution_guide.md) for instructions on how to contribute code to Nunchaku.

Muyang Li's avatar
Muyang Li committed
310
311
## Troubleshooting

312
Encountering issues while using Nunchaku? Start by browsing our [FAQ](docs/faq.md) for common solutions. If you still need help, feel free to [open an issue](https://github.com/mit-han-lab/nunchaku/issues). You’re also welcome to join our community discussions on [**Slack**](https://join.slack.com/t/nunchaku/shared_invite/zt-3170agzoz-NgZzWaTrEj~n2KEV3Hpl5Q), [**Discord**](https://discord.gg/Wk6PnwX9Sm), or [**WeChat**](https://huggingface.co/mit-han-lab/nunchaku-artifacts/resolve/main/nunchaku/assets/wechat.jpg).
Muyang Li's avatar
Muyang Li committed
313

314
315
316
317
## Contact Us

For enterprises interested in adopting SVDQuant or Nunchaku, including technical consulting, sponsorship opportunities, or partnership inquiries, please contact us at muyangli@mit.edu.

Zhekai Zhang's avatar
Zhekai Zhang committed
318
319
## Related Projects

320
321
322
323
324
325
326
- [Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models](https://arxiv.org/abs/2211.02048), NeurIPS 2022 & T-PAMI 2023
- [SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models](https://arxiv.org/abs/2211.10438), ICML 2023
- [Q-Diffusion: Quantizing Diffusion Models](https://arxiv.org/abs/2302.04304), ICCV 2023
- [AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration](https://arxiv.org/abs/2306.00978), MLSys 2024
- [DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models](https://arxiv.org/abs/2402.19481), CVPR 2024
- [QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving](https://arxiv.org/abs/2405.04532), MLSys 2025
- [SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers](https://arxiv.org/abs/2410.10629), ICLR 2025
Muyang Li's avatar
Muyang Li committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

## Citation

If you find `nunchaku` useful or relevant to your research, please cite our paper:

```bibtex
@inproceedings{
  li2024svdquant,
  title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
  author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
  booktitle={The Thirteenth International Conference on Learning Representations},
  year={2025}
}
```

Zhekai Zhang's avatar
Zhekai Zhang committed
342
343
344
345
## Acknowledgments

We thank MIT-IBM Watson AI Lab, MIT and Amazon Science Hub, MIT AI Hardware Program, National Science Foundation, Packard Foundation, Dell, LG, Hyundai, and Samsung for supporting this research. We thank NVIDIA for donating the DGX server.

muyangli's avatar
muyangli committed
346
We use [img2img-turbo](https://github.com/GaParmar/img2img-turbo) to train the sketch-to-image LoRA. Our text-to-image and image-to-image UI is built upon [playground-v.25](https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py) and [img2img-turbo](https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py), respectively. Our safety checker is borrowed from [hart](https://github.com/mit-han-lab/hart).
Zhekai Zhang's avatar
Zhekai Zhang committed
347

Muyang Li's avatar
Muyang Li committed
348
Nunchaku is also inspired by many open-source libraries, including (but not limited to) [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [vLLM](https://github.com/vllm-project/vllm), [QServe](https://github.com/mit-han-lab/qserve), [AWQ](https://github.com/mit-han-lab/llm-awq), [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), and [Atom](https://github.com/efeslab/Atom).
muyangli's avatar
muyangli committed
349
350
351
352

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=mit-han-lab/nunchaku&type=Date)](https://www.star-history.com/#mit-han-lab/nunchaku&Date)