-**[2025-02-20]** 🚀 We release the [pre-built wheels](https://huggingface.co/mit-han-lab/nunchaku) to simplify installation! Check [here](#Installation) for the guidance!
-**[2025-02-20]** 🚀 **Support NVFP4 precision on NVIDIA RTX 5090!** NVFP4 delivers superior image quality compared to INT4, offering **~3× speedup** on the RTX 5090 over BF16. Learn more in our [blog](https://hanlab.mit.edu/blog/svdquant-nvfp4), checkout [`examples`](./examples) for usage and try [our demo](https://svdquant.mit.edu/flux1-schnell/) online!
-**[2025-02-18]** 🔥 [**Customized LoRA conversion**](#Customized-LoRA) and [**model quantization**](#Customized-Model-Quantization) instructions are now available! **[ComfyUI](./comfyui)** workflows now support **customized LoRA**, along with **FLUX.1-Tools**!
-**[2025-02-14]** 🔥 **[LoRA conversion script](nunchaku/convert_lora.py)** is now available! [ComfyUI FLUX.1-tools workflows](./comfyui) is released!
...
...
@@ -42,6 +43,22 @@ SVDQuant is a post-training quantization technique for 4-bit weights and activat
## Installation
### Wheels (Linux only for now)
Before installation, ensure you have PyTorch 2.6 installed (support for PyTorch 2.5 wheels will be added later):
Once PyTorch is installed, you can directly install `nunchaku` from our [Hugging Face repository](https://huggingface.co/mit-han-lab/nunchaku/tree/main). Be sure to select the appropriate wheel for your Python version. For example, for Python 3.11:
**Note**: NVFP4 wheels are not currently available because PyTorch has not officially supported CUDA 11.8. To use NVFP4, you will need **Blackwell GPUs (e.g., 50-series GPUs)** and must **build from source**.
### Build from Source
**Note**:
...
...
@@ -54,29 +71,37 @@ SVDQuant is a post-training quantization technique for 4-bit weights and activat
**[Optional]** You can verify your installation by running: `python -m nunchaku.test`. This command will download and run our 4-bit FLUX.1-schnell model.