FluxModel.h 3.57 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#pragma once

#include "common.h"
#include "Tensor.h"
#include "Module.h"
#include "Linear.h"
#include "layernorm.h"

class AdaLayerNormZeroSingle : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMV_AWQ, GEMM_W8A8>;

    struct Output {
        Tensor x;
        Tensor gate_msa;
    };

public:
    AdaLayerNormZeroSingle(int dim, Tensor::ScalarType dtype, Device device);
    Output forward(Tensor x, Tensor emb);

public:
    const int dim;

private:
    GEMM linear;
    LayerNorm norm;
};

class AdaLayerNormZero : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMV_AWQ, GEMM_W8A8>;

    struct Output {
        Tensor x;
        Tensor gate_msa;
        Tensor shift_mlp;
        Tensor scale_mlp;
        Tensor gate_mlp;
    };
public:
    AdaLayerNormZero(int dim, bool pre_only, Tensor::ScalarType dtype, Device device);
    Output forward(Tensor x, Tensor emb);

public:
    const int dim;
    const bool pre_only;

private:
    GEMM linear;
    LayerNorm norm;
};

56
class Attention : public Module {
Zhekai Zhang's avatar
Zhekai Zhang committed
57
58
59
60
61
62
public:
    static constexpr int POOL_SIZE = 128;
    
    Attention(int num_heads, int dim_head, Device device);
    Tensor forward(Tensor qkv, Tensor pool_qkv, float sparsityRatio);

63
64
    static void setForceFP16(Module *module, bool value);

Zhekai Zhang's avatar
Zhekai Zhang committed
65
66
67
public:
    const int num_heads;
    const int dim_head;
68
    bool force_fp16;
Zhekai Zhang's avatar
Zhekai Zhang committed
69
70
71
72
73
74
75
76
77
78
79

private:
    Tensor cu_seqlens_cpu;
    Tensor headmask_type;
};

class FluxSingleTransformerBlock : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMM_W4A4, GEMM_W8A8>;

80
    FluxSingleTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, int mlp_ratio, bool use_fp4, Tensor::ScalarType dtype, Device device);
Zhekai Zhang's avatar
Zhekai Zhang committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    Tensor forward(Tensor hidden_states, Tensor temb, Tensor rotary_emb);

public:
    const int dim;
    const int dim_head;
    const int num_heads;
    const int mlp_hidden_dim;

private:
    AdaLayerNormZeroSingle norm;
    GEMM mlp_fc1;
    GEMM mlp_fc2;
    GEMM qkv_proj;
    RMSNorm norm_q, norm_k;
    Attention attn;
    GEMM out_proj;
};

class JointTransformerBlock : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMM_W4A4, GEMM_W8A8>;

104
    JointTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, bool context_pre_only, bool use_fp4, Tensor::ScalarType dtype, Device device);
Zhekai Zhang's avatar
Zhekai Zhang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    std::tuple<Tensor, Tensor> forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb, Tensor rotary_emb_context, float sparsityRatio);

public:
    const int dim;
    const int dim_head;
    const int num_heads;
    const bool context_pre_only;

private:
    AdaLayerNormZero norm1;
    AdaLayerNormZero norm1_context;
    GEMM qkv_proj;
    GEMM qkv_proj_context;
    RMSNorm norm_q, norm_k;
    RMSNorm norm_added_q, norm_added_k;
    Attention attn;
    GEMM out_proj;
    GEMM out_proj_context;
    LayerNorm norm2;
    LayerNorm norm2_context;
    GEMM mlp_fc1, mlp_fc2;
    GEMM mlp_context_fc1, mlp_context_fc2;
};

class FluxModel : public Module {
public:
131
    FluxModel(bool use_fp4, Tensor::ScalarType dtype, Device device);
Zhekai Zhang's avatar
Zhekai Zhang committed
132
133
134
135
136
137
    Tensor forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb_img, Tensor rotary_emb_context, Tensor rotary_emb_single);

public:
    std::vector<std::unique_ptr<JointTransformerBlock>> transformer_blocks;
    std::vector<std::unique_ptr<FluxSingleTransformerBlock>> single_transformer_blocks;
};