FluxModel.h 3.43 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#pragma once

#include "common.h"
#include "Tensor.h"
#include "Module.h"
#include "Linear.h"
#include "layernorm.h"

class AdaLayerNormZeroSingle : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMV_AWQ, GEMM_W8A8>;

    struct Output {
        Tensor x;
        Tensor gate_msa;
    };

public:
    AdaLayerNormZeroSingle(int dim, Tensor::ScalarType dtype, Device device);
    Output forward(Tensor x, Tensor emb);

public:
    const int dim;

private:
    GEMM linear;
    LayerNorm norm;
};

class AdaLayerNormZero : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMV_AWQ, GEMM_W8A8>;

    struct Output {
        Tensor x;
        Tensor gate_msa;
        Tensor shift_mlp;
        Tensor scale_mlp;
        Tensor gate_mlp;
    };
public:
    AdaLayerNormZero(int dim, bool pre_only, Tensor::ScalarType dtype, Device device);
    Output forward(Tensor x, Tensor emb);

public:
    const int dim;
    const bool pre_only;

private:
    GEMM linear;
    LayerNorm norm;
};

class Attention {
public:
    static constexpr int POOL_SIZE = 128;
    
    Attention(int num_heads, int dim_head, Device device);
    Tensor forward(Tensor qkv, Tensor pool_qkv, float sparsityRatio);

public:
    const int num_heads;
    const int dim_head;

private:
    Tensor cu_seqlens_cpu;
    Tensor headmask_type;
};

class FluxSingleTransformerBlock : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMM_W4A4, GEMM_W8A8>;

    FluxSingleTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, int mlp_ratio, Tensor::ScalarType dtype, Device device);
    Tensor forward(Tensor hidden_states, Tensor temb, Tensor rotary_emb);

public:
    const int dim;
    const int dim_head;
    const int num_heads;
    const int mlp_hidden_dim;

private:
    AdaLayerNormZeroSingle norm;
    GEMM mlp_fc1;
    GEMM mlp_fc2;
    GEMM qkv_proj;
    RMSNorm norm_q, norm_k;
    Attention attn;
    GEMM out_proj;
};

class JointTransformerBlock : public Module {
public:
    static constexpr bool USE_4BIT = true;
    using GEMM = std::conditional_t<USE_4BIT, GEMM_W4A4, GEMM_W8A8>;

    JointTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, bool context_pre_only, Tensor::ScalarType dtype, Device device);
    std::tuple<Tensor, Tensor> forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb, Tensor rotary_emb_context, float sparsityRatio);

public:
    const int dim;
    const int dim_head;
    const int num_heads;
    const bool context_pre_only;

private:
    AdaLayerNormZero norm1;
    AdaLayerNormZero norm1_context;
    GEMM qkv_proj;
    GEMM qkv_proj_context;
    RMSNorm norm_q, norm_k;
    RMSNorm norm_added_q, norm_added_k;
    Attention attn;
    GEMM out_proj;
    GEMM out_proj_context;
    LayerNorm norm2;
    LayerNorm norm2_context;
    GEMM mlp_fc1, mlp_fc2;
    GEMM mlp_context_fc1, mlp_context_fc2;
};

class FluxModel : public Module {
public:
    FluxModel(Tensor::ScalarType dtype, Device device);
    Tensor forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb_img, Tensor rotary_emb_context, Tensor rotary_emb_single);

public:
    std::vector<std::unique_ptr<JointTransformerBlock>> transformer_blocks;
    std::vector<std::unique_ptr<FluxSingleTransformerBlock>> single_transformer_blocks;
};