SanaModel.cpp 11.6 KB
Newer Older
Hyunsung Lee's avatar
Hyunsung Lee committed
1
2
#include <iostream>

muyangli's avatar
muyangli committed
3
4
5
6
7
8
9
10
11
12
#include "SanaModel.h"
#include "kernels/zgemm/zgemm.h"
#include "flash_api.h"
#include "kernels/misc_kernels.h"

#include <nvtx3/nvToolsExt.h>

using spdlog::fmt_lib::format;
using namespace nunchaku;

Hyunsung Lee's avatar
Hyunsung Lee committed
13

14
SanaLinearAttention::SanaLinearAttention(int dim, bool bias, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
15
16
    dim(dim),
    dim_pad(ceilDiv(dim, 128) * 128),
17
18
    qkv_proj(dim, dim_pad * 3, bias, use_fp4, dtype, device),
    out_proj(dim_pad, dim, bias, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
19
20
21
22
23
24
25
26
    pag_to_v(std::nullopt)
{
    registerChildren
        (qkv_proj, "qkv_proj")
        (out_proj, "out_proj")
    ;

    if (pag) {
27
        pag_to_v.emplace(dim, dim_pad, bias, use_fp4, dtype, device);
muyangli's avatar
muyangli committed
28
29
30
31
32
33
        registerChildren(pag_to_v.value(), "pag_to_v");
    }
}

Tensor SanaLinearAttention::forward(Tensor x, Tensor out) {
    constexpr int HEAD_DIM = 32;
Hyunsung Lee's avatar
Hyunsung Lee committed
34

muyangli's avatar
muyangli committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    assert(x.ndims() == 3);
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];
    const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;
    assert(x.shape[2] == dim);

    const int num_heads = dim_pad / HEAD_DIM;

    if (num_tokens_pad != num_tokens) {
        spdlog::debug("SanaLinearAttention: pad num_tokens from {} to {}", num_tokens, num_tokens_pad);

        Tensor x_pad = Tensor::allocate({batch_size, num_tokens_pad, dim}, x.dtype(), x.device());
        x_pad.zero_();
        for (int i = 0; i < batch_size; i++) {
            x_pad.slice(0, i, i + 1).slice(1, 0, num_tokens).copy_(x.slice(0, i, i + 1));
        }
Hyunsung Lee's avatar
Hyunsung Lee committed
51

muyangli's avatar
muyangli committed
52
53
54
55
56
57
58
59
60
        x = x_pad;
    }

    auto qact = qkv_proj.quantize(x, false);

    Tensor q = Tensor::allocate({batch_size, num_tokens_pad, dim_pad}, x.dtype(), x.device());
    Tensor vk = Tensor::allocate({batch_size, num_heads, HEAD_DIM + 1, HEAD_DIM}, Tensor::FP32, x.device());

    kernels::gemm_w4a4(
Hyunsung Lee's avatar
Hyunsung Lee committed
61
62
63
64
65
66
67
68
        qact.act,
        qkv_proj.qweight,
        {},
        {},
        qact.ascales,
        qkv_proj.wscales,
        {}, {}, qact.lora_act, qkv_proj.lora_up, {}, {}, {}, {}, {}, qkv_proj.bias, {},
        vk, q,
69
70
71
72
73
        qact.is_unsigned, qkv_proj.lora_scales, false,
        qkv_proj.use_fp4,
        *qkv_proj.wtscale.data_ptr<float>(),
        qkv_proj.wcscales.numel() > 0 ? qkv_proj.wcscales : Tensor{}
        );
muyangli's avatar
muyangli committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    debug("vk", vk);
    debug("q", q);

    kernels::linearattn_vk_mul_q(q, vk);

    debug("raw_attn_output", q);

    if (num_tokens_pad != num_tokens) {
        Tensor q_unpad = Tensor::allocate({batch_size, num_tokens, dim_pad}, q.dtype(), q.device());
        for (int i = 0; i < batch_size; i++) {
            q_unpad.slice(0, i, i + 1).copy_(q.slice(0, i, i + 1).slice(1, 0, num_tokens));
        }
        q = q_unpad;
    }


    // kernels::gemm_w8a8_fuse_litela(qact.act, qkv.qweight, q, vk, qact.ascales, qkv.wscales);

    // return out_proj.forward(q);
    if (!out.valid()) {
        out = Tensor::allocate({batch_size, num_tokens, dim}, q.dtype(), q.device());
    }
    out_proj.forward(q, out);
    return out;
}

Tensor SanaLinearAttention::forward_pag(Tensor x, bool cfg) {
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];

    Tensor out = Tensor::allocate({batch_size, num_tokens, dim}, x.dtype(), x.device());
    Tensor x_org, x_ptb;
    Tensor out_org, out_ptb;

    if (cfg) {
        assert(batch_size % 3 == 0);
        x_org = x.slice(0, 0, batch_size * 2 / 3);
        x_ptb = x.slice(0, batch_size * 2 / 3, batch_size);
        out_org = out.slice(0, 0, batch_size * 2 / 3);
        out_ptb = out.slice(0, batch_size * 2 / 3, batch_size);
    } else {
        assert(batch_size % 2 == 0);
        x_org = x.slice(0, 0, batch_size / 2);
        x_ptb = x.slice(0, batch_size / 2, batch_size);
        out_org = out.slice(0, 0, batch_size / 2);
        out_ptb = out.slice(0, batch_size / 2, batch_size);
    }

    this->forward(x_org, out_org);
Hyunsung Lee's avatar
Hyunsung Lee committed
124

muyangli's avatar
muyangli committed
125
126
127
128
    Tensor v_ptb = this->pag_to_v.value().forward(x_ptb);
    this->out_proj.forward(v_ptb, out_ptb);

    return out;
Hyunsung Lee's avatar
Hyunsung Lee committed
129
}
muyangli's avatar
muyangli committed
130

131
MultiHeadCrossAttention::MultiHeadCrossAttention(int num_heads, int head_dim, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
132
    num_heads(num_heads), head_dim(head_dim),
133
    q_linear(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
134
    kv_linear(num_heads * head_dim, num_heads * head_dim * 2, true, dtype, device),
135
    out_proj(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device)
muyangli's avatar
muyangli committed
136
137
138
139
140
141
142
143
144
145
146
147
148
{
    registerChildren
        (q_linear, "q_linear")
        (kv_linear, "kv_linear")
        (out_proj, "out_proj")
    ;
}

Tensor MultiHeadCrossAttention::forward(Tensor x, Tensor cond, Tensor cu_seqlens_img, Tensor cu_seqlens_txt) {
    assert(x.ndims() == 3);
    assert(cond.ndims() == 2);
    assert(cu_seqlens_img.ndims() == 1);
    assert(cu_seqlens_txt.ndims() == 1);
Hyunsung Lee's avatar
Hyunsung Lee committed
149

muyangli's avatar
muyangli committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    const int batch_size     = x.shape[0];
    const int num_tokens_img = x.shape[1];
    const int num_tokens_txt = cond.shape[0];

    assert(cu_seqlens_img.shape[0] == batch_size + 1);
    assert(cu_seqlens_txt.shape[0] == batch_size + 1);

    Tensor q = q_linear.forward(x).view({batch_size * num_tokens_img, num_heads, head_dim});
    Tensor kv = kv_linear.forward(cond).view({num_tokens_txt, num_heads * 2, head_dim});

    Tensor k = kv.slice(1, 0, num_heads);
    Tensor v = kv.slice(1, num_heads, num_heads * 2);

    Tensor attn_output = mha_varlen_fwd(
        q, k, v,
        cu_seqlens_img, cu_seqlens_txt,
        num_tokens_img, num_tokens_txt,
        0.0f,
        pow(q.shape[-1], (-0.5)),
Hyunsung Lee's avatar
Hyunsung Lee committed
169
        false, false,
muyangli's avatar
muyangli committed
170
171
172
173
        -1, -1,
        false
    ).front().view({batch_size, num_tokens_img, num_heads * head_dim});

Hyunsung Lee's avatar
Hyunsung Lee committed
174
175
176
    // Tensor attn_output = mha_fwd(q, k, v,
    //     0.0f,
    //     pow(q.shape[-1], (-0.5)),
muyangli's avatar
muyangli committed
177
178
179
180
181
182
    //     false, -1, -1, false
    // ).front().view({B, N, num_heads * head_dim});

    return out_proj.forward(attn_output);
}

Hyunsung Lee's avatar
Hyunsung Lee committed
183
SanaGLUMBConv::SanaGLUMBConv(int in_features, int hidden_features, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
184
    in_features(in_features), hidden_features(hidden_features),
185
    inverted_conv(in_features, hidden_features * 2, true, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
186
    depth_conv(hidden_features * 2, true, dtype, device),
187
    point_conv(hidden_features, in_features, false, use_fp4, dtype, device)
muyangli's avatar
muyangli committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
{
    registerChildren
        (inverted_conv, "inverted_conv")
        (depth_conv, "depth_conv")
        (point_conv, "point_conv")
    ;
}

Tensor SanaGLUMBConv::forward(Tensor x, int H, int W) {
    if (H <= 0 || W <= 0) {
        H = W = sqrt(x.shape[1]);
    }
    x = inverted_conv.forward_silu(x);
    x = x.view({x.shape[0], H, W, x.shape[-1]});
    debug("inverted_conv_output", x);
    x = depth_conv.forward(x);
    debug("depth_conv_output", x);
    x = x.view({x.shape[0], H * W, x.shape[-1]});
    auto qact = point_conv.quantize(x, true);
    return point_conv.forward_quant(qact);
}

Hyunsung Lee's avatar
Hyunsung Lee committed
210
SanaLinearTransformerBlock::SanaLinearTransformerBlock(int hidden_size, int intermediate_size, int num_cross_attention_heads, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
211
    hidden_size(hidden_size), num_cross_attention_heads(num_cross_attention_heads),
212
213
214
    attn(hidden_size, false, pag, use_fp4, dtype, device),
    cross_attn(num_cross_attention_heads, hidden_size / num_cross_attention_heads, use_fp4, dtype, device),
    ff(hidden_size, intermediate_size, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    norm1(hidden_size, 1e-6, false, dtype, device),
    norm2(hidden_size, 1e-6, false, dtype, device)
{
    this->scale_shift_table = Tensor::allocate({6, hidden_size}, dtype, device);

    registerChildren
        (attn, "attn")
        (cross_attn, "cross_attn")
        (ff, "ff")
    ;

    registerParams
        (this->scale_shift_table, "scale_shift_table")
    ;
}

Tensor SanaLinearTransformerBlock::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg) {

    nvtxRangePushA("SanaLinearTransformerBlock");

    nvtxRangePushA("chunk");

    // Tensor ones = Tensor::ones({hidden_size}, Tensor::FP16, x.device());

    const int batch_size = timestep.shape[0];

    timestep = timestep.copy(timestep.device());
    timestep = timestep.view({batch_size, 6, hidden_size});

    kernels::mul_add_batch(timestep, {}, false, 0, this->scale_shift_table, false);
    debug("shifted_timestep", timestep);
Hyunsung Lee's avatar
Hyunsung Lee committed
246

muyangli's avatar
muyangli committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    std::array<Tensor, 6> chunked;
    for (int i = 0; i < 6; i++) {
        chunked[i] = timestep.slice(1, i, i + 1);
    }
    auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = chunked;
    // auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(timestep);

    nvtxRangePop();

    {
        nvtxRangePushA("LinearAttention");

        Tensor residual = hidden_states;
        Tensor norm_hidden_states = norm1.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_msa, true, 1, shift_msa, true);
        debug("norm_hidden_states_la", norm_hidden_states);

        Tensor attn_output = pag ? attn.forward_pag(norm_hidden_states, cfg) : attn.forward(norm_hidden_states);
        debug("attn_output_la", attn_output);

        kernels::mul_add_batch(attn_output, gate_msa, true, 0, residual, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("CrossAttention");

        debug("norm_hidden_states_cross", hidden_states);
        Tensor attn_output = cross_attn.forward(hidden_states, encoder_hidden_states, cu_seqlens_img, cu_seqlens_txt);
        debug("attn_output_cross", attn_output);

        kernels::mul_add_batch(attn_output, {}, false, 0, hidden_states, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("Feed-forward");

        debug("hidden_states_ff", hidden_states);
        Tensor norm_hidden_states = norm2.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_mlp, true, 1, shift_mlp, true);
        debug("norm_hidden_states_ff", norm_hidden_states);

        Tensor ff_output = ff.forward(norm_hidden_states, H, W);
        debug("ff_output", ff_output);

        kernels::mul_add_batch(ff_output, gate_mlp, true, 0, hidden_states, true);

        hidden_states = ff_output;

        nvtxRangePop();
    }
Hyunsung Lee's avatar
Hyunsung Lee committed
305

muyangli's avatar
muyangli committed
306
307
308
309
310
311
312
    nvtxRangePop();

    debug("hidden_states_out", hidden_states);

    return hidden_states;
}

Hyunsung Lee's avatar
Hyunsung Lee committed
313
SanaModel::SanaModel(SanaConfig config, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
314
315
316
317
318
319
320
321
322
    config(config)
{
    const int inner_dim = config.num_attention_heads * config.attention_head_dim;
    for (int i = 0; i < config.num_layers; i++) {
        transformer_blocks.push_back(std::make_unique<SanaLinearTransformerBlock>(
            inner_dim,
            ceilDiv(int(round(config.expand_ratio * inner_dim)), 64) * 64,
            config.num_cross_attention_heads,
            std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
323
            config.use_fp4,
muyangli's avatar
muyangli committed
324
325
326
327
328
329
            dtype, device
        ));
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
}

Hyunsung Lee's avatar
Hyunsung Lee committed
330
331
Tensor SanaModel::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg, bool skip_first_layer) {
    for (int i = (skip_first_layer ? 1 : 0); i < config.num_layers; i++) {
muyangli's avatar
muyangli committed
332
333
334
335
336
337
338
339
340
        auto &&block = transformer_blocks[i];
        hidden_states = block->forward(
            hidden_states, encoder_hidden_states, timestep, cu_seqlens_img, cu_seqlens_txt, H, W,
            pag && std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
            cfg
        );
    }
    return hidden_states;
}