Linear.h 3.42 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
#pragma once

#include "common.h"
#include "Tensor.h"
#include "Module.h"

muyangli's avatar
muyangli committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class GEMM_F16 : public Module {
public:
    GEMM_F16(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

public:
    const int in_features;
    const int out_features;

public:
    Tensor weight;
    Tensor bias;
};

Zhekai Zhang's avatar
Zhekai Zhang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class GEMV_AWQ : public Module {
public:
    GEMV_AWQ(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

protected:
    virtual void loadParam(std::string key, Tensor &dst, Tensor src) override;

public:
    const int in_features;
    const int out_features;
    const int group_size;

    int lora_rank;
    float lora_scale;

muyangli's avatar
muyangli committed
39
    const Device device;
Zhekai Zhang's avatar
Zhekai Zhang committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public:
    Tensor qweight;
    Tensor wscales;
    Tensor wzeros;
    Tensor bias;

    Tensor lora_down;
    Tensor lora_up;

    // std::shared_ptr<CUBLASWrapper> cublas;
};

class GEMM_W4A4 : public Module {
public:
    enum class FuseOptions {
        EMPTY = 0,
        GELU_QUANT,
muyangli's avatar
muyangli committed
57
        SILU,
Zhekai Zhang's avatar
Zhekai Zhang committed
58
59
60
61
62
63
    };
    struct QuantizedActivation {
        Tensor act;
        Tensor ascales;
        Tensor lora_act;
        bool is_unsigned = false;
muyangli's avatar
muyangli committed
64
        TensorShape actShape;
Zhekai Zhang's avatar
Zhekai Zhang committed
65
66
67
    };

public:
68
    GEMM_W4A4(int in_features, int out_features, bool bias, bool use_fp4, Tensor::ScalarType dtype, Device device);
muyangli's avatar
muyangli committed
69
70
71
    Tensor forward(Tensor x);
    Tensor forward_silu(Tensor x);
    std::variant<Tensor, QuantizedActivation> forward(Tensor x, FuseOptions fuse, GEMM_W4A4 *nextGEMM = nullptr);
72
73
74
75
76
    void forward(
        Tensor x, Tensor out, 
        Tensor pool = {}, Tensor norm_q = {}, Tensor norm_k = {}, Tensor rotary_emb = {}, 
        Tensor out_q = {}, Tensor out_k = {}, Tensor out_v = {}, int numTokens = 0
    );
muyangli's avatar
muyangli committed
77
78
    std::variant<Tensor, QuantizedActivation> forward_quant(QuantizedActivation qact, FuseOptions fuse, GEMM_W4A4 *nextGEMM = nullptr);
    Tensor forward_quant(QuantizedActivation qact);
Zhekai Zhang's avatar
Zhekai Zhang committed
79
80

public:
muyangli's avatar
muyangli committed
81
    QuantizedActivation quantize(Tensor x, bool fuse_glu);
Zhekai Zhang's avatar
Zhekai Zhang committed
82
83
84
85

public:
    const int in_features;
    const int out_features;
muyangli's avatar
muyangli committed
86
87
    const int in_features_pad;
    const int out_features_pad;
88
    const bool use_fp4;
muyangli's avatar
muyangli committed
89
    
Zhekai Zhang's avatar
Zhekai Zhang committed
90
91
92
93
    int lora_rank;
    std::vector<float> lora_scales; // every 16 ranks share a scale

    const Tensor::ScalarType dtype;
muyangli's avatar
muyangli committed
94
    const Device device;
Zhekai Zhang's avatar
Zhekai Zhang committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108

protected:
    virtual void loadParam(std::string key, Tensor &dst, Tensor src) override;

public:
    Tensor qweight;
    Tensor wscales;
    Tensor bias;

    Tensor lora_down;
    Tensor lora_up;

    Tensor smooth;

109
110
111
    Tensor wtscale;
    Tensor wcscales;

Zhekai Zhang's avatar
Zhekai Zhang committed
112
113
114
    cublasHandle_t handle;
};

muyangli's avatar
muyangli committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
class GEMM_W8A8 : public Module {
public:
    struct QuantizedActivation {
        Tensor act;
        Tensor ascales;
    };
public:
    GEMM_W8A8(int in_features, int out_features, bool bias, Tensor::ScalarType dtype, Device device);

public:
    QuantizedActivation quantize(Tensor x, bool fuse_glu); 
    Tensor forward_quant(QuantizedActivation qact);
    Tensor forward(Tensor x) { return forward_quant(quantize(x, false)); }

public:
    const int in_features;
    const int out_features;
    const Tensor::ScalarType dtype;

public:
    Tensor qweight;
    Tensor wscales;
    Tensor bias;
};

class DWCONV : public Module {
public:
    DWCONV(int in_features, bool bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

public:
    const int in_features;

public:
    Tensor weight;
    Tensor bias;
};