Linear.h 3.26 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
#pragma once

#include "common.h"
#include "Tensor.h"
#include "Module.h"

muyangli's avatar
muyangli committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class GEMM_F16 : public Module {
public:
    GEMM_F16(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

public:
    const int in_features;
    const int out_features;

public:
    Tensor weight;
    Tensor bias;
};

Zhekai Zhang's avatar
Zhekai Zhang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class GEMV_AWQ : public Module {
public:
    GEMV_AWQ(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

protected:
    virtual void loadParam(std::string key, Tensor &dst, Tensor src) override;

public:
    const int in_features;
    const int out_features;
    const int group_size;

    int lora_rank;
    float lora_scale;

public:
    Tensor qweight;
    Tensor wscales;
    Tensor wzeros;
    Tensor bias;

    Tensor lora_down;
    Tensor lora_up;

    // std::shared_ptr<CUBLASWrapper> cublas;
};

class GEMM_W4A4 : public Module {
public:
    enum class FuseOptions {
        EMPTY = 0,
        GELU_QUANT,
muyangli's avatar
muyangli committed
56
        SILU,
Zhekai Zhang's avatar
Zhekai Zhang committed
57
58
59
60
61
62
    };
    struct QuantizedActivation {
        Tensor act;
        Tensor ascales;
        Tensor lora_act;
        bool is_unsigned = false;
muyangli's avatar
muyangli committed
63
        TensorShape actShape;
Zhekai Zhang's avatar
Zhekai Zhang committed
64
65
66
    };

public:
67
    GEMM_W4A4(int in_features, int out_features, bool bias, bool use_fp4, Tensor::ScalarType dtype, Device device);
muyangli's avatar
muyangli committed
68
69
70
    Tensor forward(Tensor x);
    Tensor forward_silu(Tensor x);
    std::variant<Tensor, QuantizedActivation> forward(Tensor x, FuseOptions fuse, GEMM_W4A4 *nextGEMM = nullptr);
Zhekai Zhang's avatar
Zhekai Zhang committed
71
    void forward(Tensor x, Tensor out, Tensor pool = {}, Tensor norm_q = {}, Tensor norm_k = {}, Tensor rotary_emb = {});
muyangli's avatar
muyangli committed
72
73
    std::variant<Tensor, QuantizedActivation> forward_quant(QuantizedActivation qact, FuseOptions fuse, GEMM_W4A4 *nextGEMM = nullptr);
    Tensor forward_quant(QuantizedActivation qact);
Zhekai Zhang's avatar
Zhekai Zhang committed
74
75

public:
muyangli's avatar
muyangli committed
76
    QuantizedActivation quantize(Tensor x, bool fuse_glu);
Zhekai Zhang's avatar
Zhekai Zhang committed
77
78
79
80

public:
    const int in_features;
    const int out_features;
muyangli's avatar
muyangli committed
81
82
    const int in_features_pad;
    const int out_features_pad;
83
    const bool use_fp4;
muyangli's avatar
muyangli committed
84
    
Zhekai Zhang's avatar
Zhekai Zhang committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    int lora_rank;
    std::vector<float> lora_scales; // every 16 ranks share a scale

    const Tensor::ScalarType dtype;

protected:
    virtual void loadParam(std::string key, Tensor &dst, Tensor src) override;

public:
    Tensor qweight;
    Tensor wscales;
    Tensor bias;

    Tensor lora_down;
    Tensor lora_up;

    Tensor smooth;

103
104
105
    Tensor wtscale;
    Tensor wcscales;

Zhekai Zhang's avatar
Zhekai Zhang committed
106
107
108
    cublasHandle_t handle;
};

muyangli's avatar
muyangli committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class GEMM_W8A8 : public Module {
public:
    struct QuantizedActivation {
        Tensor act;
        Tensor ascales;
    };
public:
    GEMM_W8A8(int in_features, int out_features, bool bias, Tensor::ScalarType dtype, Device device);

public:
    QuantizedActivation quantize(Tensor x, bool fuse_glu); 
    Tensor forward_quant(QuantizedActivation qact);
    Tensor forward(Tensor x) { return forward_quant(quantize(x, false)); }

public:
    const int in_features;
    const int out_features;
    const Tensor::ScalarType dtype;

public:
    Tensor qweight;
    Tensor wscales;
    Tensor bias;
};

class DWCONV : public Module {
public:
    DWCONV(int in_features, bool bias, Tensor::ScalarType dtype, Device device);

    Tensor forward(Tensor x);

public:
    const int in_features;

public:
    Tensor weight;
    Tensor bias;
};