flux.1-dev-multiple-lora.py 1.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
from diffusers import FluxPipeline

from nunchaku import NunchakuFluxTransformer2dModel
from nunchaku.lora.flux.compose import compose_lora
from nunchaku.utils import get_precision

precision = get_precision()  # auto-detect your precision is 'int4' or 'fp4' based on your GPU
transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev")
pipeline = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")

### LoRA Related Code ###
composed_lora = compose_lora(
    [
        ("aleksa-codes/flux-ghibsky-illustration/lora.safetensors", 1),
        ("alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors", 1),
    ]
)  # set your lora strengths here when using composed lora
transformer.update_lora_params(composed_lora)
### End of LoRA Related Code ###

image = pipeline(
    "GHIBSKY style, cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows",  # noqa: E501
    num_inference_steps=8,
    guidance_scale=3.5,
).images[0]
image.save(f"flux.1-dev-turbo-ghibsky-{precision}.png")