import torch from diffusers import FluxPipeline from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.lora.flux.compose import compose_lora from nunchaku.utils import get_precision precision = get_precision() # auto-detect your precision is 'int4' or 'fp4' based on your GPU transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev") pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") ### LoRA Related Code ### composed_lora = compose_lora( [ ("aleksa-codes/flux-ghibsky-illustration/lora.safetensors", 1), ("alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors", 1), ] ) # set your lora strengths here when using composed lora transformer.update_lora_params(composed_lora) ### End of LoRA Related Code ### image = pipeline( "GHIBSKY style, cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows", # noqa: E501 num_inference_steps=8, guidance_scale=3.5, ).images[0] image.save(f"flux.1-dev-turbo-ghibsky-{precision}.png")