SanaModel.cpp 11.6 KB
Newer Older
Hyunsung Lee's avatar
Hyunsung Lee committed
1
2
#include <iostream>

muyangli's avatar
muyangli committed
3
4
5
6
7
8
9
10
11
12
#include "SanaModel.h"
#include "kernels/zgemm/zgemm.h"
#include "flash_api.h"
#include "kernels/misc_kernels.h"

#include <nvtx3/nvToolsExt.h>

using spdlog::fmt_lib::format;
using namespace nunchaku;

Hyunsung Lee's avatar
Hyunsung Lee committed
13

14
SanaLinearAttention::SanaLinearAttention(int dim, bool bias, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
15
16
    dim(dim),
    dim_pad(ceilDiv(dim, 128) * 128),
17
18
    qkv_proj(dim, dim_pad * 3, bias, use_fp4, dtype, device),
    out_proj(dim_pad, dim, bias, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
19
20
21
22
23
24
25
26
    pag_to_v(std::nullopt)
{
    registerChildren
        (qkv_proj, "qkv_proj")
        (out_proj, "out_proj")
    ;

    if (pag) {
27
        pag_to_v.emplace(dim, dim_pad, bias, use_fp4, dtype, device);
muyangli's avatar
muyangli committed
28
29
30
31
32
33
        registerChildren(pag_to_v.value(), "pag_to_v");
    }
}

Tensor SanaLinearAttention::forward(Tensor x, Tensor out) {
    constexpr int HEAD_DIM = 32;
Hyunsung Lee's avatar
Hyunsung Lee committed
34

muyangli's avatar
muyangli committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    assert(x.ndims() == 3);
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];
    const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;
    assert(x.shape[2] == dim);

    const int num_heads = dim_pad / HEAD_DIM;

    if (num_tokens_pad != num_tokens) {
        spdlog::debug("SanaLinearAttention: pad num_tokens from {} to {}", num_tokens, num_tokens_pad);

        Tensor x_pad = Tensor::allocate({batch_size, num_tokens_pad, dim}, x.dtype(), x.device());
        x_pad.zero_();
        for (int i = 0; i < batch_size; i++) {
            x_pad.slice(0, i, i + 1).slice(1, 0, num_tokens).copy_(x.slice(0, i, i + 1));
        }
Hyunsung Lee's avatar
Hyunsung Lee committed
51

muyangli's avatar
muyangli committed
52
53
54
55
56
57
58
59
60
        x = x_pad;
    }

    auto qact = qkv_proj.quantize(x, false);

    Tensor q = Tensor::allocate({batch_size, num_tokens_pad, dim_pad}, x.dtype(), x.device());
    Tensor vk = Tensor::allocate({batch_size, num_heads, HEAD_DIM + 1, HEAD_DIM}, Tensor::FP32, x.device());

    kernels::gemm_w4a4(
Hyunsung Lee's avatar
Hyunsung Lee committed
61
62
63
64
65
66
67
68
        qact.act,
        qkv_proj.qweight,
        {},
        {},
        qact.ascales,
        qkv_proj.wscales,
        {}, {}, qact.lora_act, qkv_proj.lora_up, {}, {}, {}, {}, {}, qkv_proj.bias, {},
        vk, q,
69
70
71
        qact.is_unsigned, qkv_proj.lora_scales, false,
        qkv_proj.use_fp4,
        *qkv_proj.wtscale.data_ptr<float>(),
72
73
        qkv_proj.wcscales.numel() > 0 ? qkv_proj.wcscales : Tensor{},
        {}, {}, {}, 0
74
        );
muyangli's avatar
muyangli committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    debug("vk", vk);
    debug("q", q);

    kernels::linearattn_vk_mul_q(q, vk);

    debug("raw_attn_output", q);

    if (num_tokens_pad != num_tokens) {
        Tensor q_unpad = Tensor::allocate({batch_size, num_tokens, dim_pad}, q.dtype(), q.device());
        for (int i = 0; i < batch_size; i++) {
            q_unpad.slice(0, i, i + 1).copy_(q.slice(0, i, i + 1).slice(1, 0, num_tokens));
        }
        q = q_unpad;
    }


    // kernels::gemm_w8a8_fuse_litela(qact.act, qkv.qweight, q, vk, qact.ascales, qkv.wscales);

    // return out_proj.forward(q);
    if (!out.valid()) {
        out = Tensor::allocate({batch_size, num_tokens, dim}, q.dtype(), q.device());
    }
    out_proj.forward(q, out);
    return out;
}

Tensor SanaLinearAttention::forward_pag(Tensor x, bool cfg) {
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];

    Tensor out = Tensor::allocate({batch_size, num_tokens, dim}, x.dtype(), x.device());
    Tensor x_org, x_ptb;
    Tensor out_org, out_ptb;

    if (cfg) {
        assert(batch_size % 3 == 0);
        x_org = x.slice(0, 0, batch_size * 2 / 3);
        x_ptb = x.slice(0, batch_size * 2 / 3, batch_size);
        out_org = out.slice(0, 0, batch_size * 2 / 3);
        out_ptb = out.slice(0, batch_size * 2 / 3, batch_size);
    } else {
        assert(batch_size % 2 == 0);
        x_org = x.slice(0, 0, batch_size / 2);
        x_ptb = x.slice(0, batch_size / 2, batch_size);
        out_org = out.slice(0, 0, batch_size / 2);
        out_ptb = out.slice(0, batch_size / 2, batch_size);
    }

    this->forward(x_org, out_org);
Hyunsung Lee's avatar
Hyunsung Lee committed
125

muyangli's avatar
muyangli committed
126
127
128
129
    Tensor v_ptb = this->pag_to_v.value().forward(x_ptb);
    this->out_proj.forward(v_ptb, out_ptb);

    return out;
Hyunsung Lee's avatar
Hyunsung Lee committed
130
}
muyangli's avatar
muyangli committed
131

132
MultiHeadCrossAttention::MultiHeadCrossAttention(int num_heads, int head_dim, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
133
    num_heads(num_heads), head_dim(head_dim),
134
    q_linear(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
135
    kv_linear(num_heads * head_dim, num_heads * head_dim * 2, true, dtype, device),
136
    out_proj(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device)
muyangli's avatar
muyangli committed
137
138
139
140
141
142
143
144
145
146
147
148
149
{
    registerChildren
        (q_linear, "q_linear")
        (kv_linear, "kv_linear")
        (out_proj, "out_proj")
    ;
}

Tensor MultiHeadCrossAttention::forward(Tensor x, Tensor cond, Tensor cu_seqlens_img, Tensor cu_seqlens_txt) {
    assert(x.ndims() == 3);
    assert(cond.ndims() == 2);
    assert(cu_seqlens_img.ndims() == 1);
    assert(cu_seqlens_txt.ndims() == 1);
Hyunsung Lee's avatar
Hyunsung Lee committed
150

muyangli's avatar
muyangli committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    const int batch_size     = x.shape[0];
    const int num_tokens_img = x.shape[1];
    const int num_tokens_txt = cond.shape[0];

    assert(cu_seqlens_img.shape[0] == batch_size + 1);
    assert(cu_seqlens_txt.shape[0] == batch_size + 1);

    Tensor q = q_linear.forward(x).view({batch_size * num_tokens_img, num_heads, head_dim});
    Tensor kv = kv_linear.forward(cond).view({num_tokens_txt, num_heads * 2, head_dim});

    Tensor k = kv.slice(1, 0, num_heads);
    Tensor v = kv.slice(1, num_heads, num_heads * 2);

    Tensor attn_output = mha_varlen_fwd(
        q, k, v,
        cu_seqlens_img, cu_seqlens_txt,
        num_tokens_img, num_tokens_txt,
        0.0f,
        pow(q.shape[-1], (-0.5)),
Hyunsung Lee's avatar
Hyunsung Lee committed
170
        false, false,
muyangli's avatar
muyangli committed
171
172
173
174
        -1, -1,
        false
    ).front().view({batch_size, num_tokens_img, num_heads * head_dim});

Hyunsung Lee's avatar
Hyunsung Lee committed
175
176
177
    // Tensor attn_output = mha_fwd(q, k, v,
    //     0.0f,
    //     pow(q.shape[-1], (-0.5)),
muyangli's avatar
muyangli committed
178
179
180
181
182
183
    //     false, -1, -1, false
    // ).front().view({B, N, num_heads * head_dim});

    return out_proj.forward(attn_output);
}

Hyunsung Lee's avatar
Hyunsung Lee committed
184
SanaGLUMBConv::SanaGLUMBConv(int in_features, int hidden_features, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
185
    in_features(in_features), hidden_features(hidden_features),
186
    inverted_conv(in_features, hidden_features * 2, true, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
187
    depth_conv(hidden_features * 2, true, dtype, device),
188
    point_conv(hidden_features, in_features, false, use_fp4, dtype, device)
muyangli's avatar
muyangli committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
    registerChildren
        (inverted_conv, "inverted_conv")
        (depth_conv, "depth_conv")
        (point_conv, "point_conv")
    ;
}

Tensor SanaGLUMBConv::forward(Tensor x, int H, int W) {
    if (H <= 0 || W <= 0) {
        H = W = sqrt(x.shape[1]);
    }
    x = inverted_conv.forward_silu(x);
    x = x.view({x.shape[0], H, W, x.shape[-1]});
    debug("inverted_conv_output", x);
    x = depth_conv.forward(x);
    debug("depth_conv_output", x);
    x = x.view({x.shape[0], H * W, x.shape[-1]});
    auto qact = point_conv.quantize(x, true);
    return point_conv.forward_quant(qact);
}

Hyunsung Lee's avatar
Hyunsung Lee committed
211
SanaLinearTransformerBlock::SanaLinearTransformerBlock(int hidden_size, int intermediate_size, int num_cross_attention_heads, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
212
    hidden_size(hidden_size), num_cross_attention_heads(num_cross_attention_heads),
213
214
215
    attn(hidden_size, false, pag, use_fp4, dtype, device),
    cross_attn(num_cross_attention_heads, hidden_size / num_cross_attention_heads, use_fp4, dtype, device),
    ff(hidden_size, intermediate_size, use_fp4, dtype, device),
muyangli's avatar
muyangli committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    norm1(hidden_size, 1e-6, false, dtype, device),
    norm2(hidden_size, 1e-6, false, dtype, device)
{
    this->scale_shift_table = Tensor::allocate({6, hidden_size}, dtype, device);

    registerChildren
        (attn, "attn")
        (cross_attn, "cross_attn")
        (ff, "ff")
    ;

    registerParams
        (this->scale_shift_table, "scale_shift_table")
    ;
}

Tensor SanaLinearTransformerBlock::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg) {

    nvtxRangePushA("SanaLinearTransformerBlock");

    nvtxRangePushA("chunk");

    // Tensor ones = Tensor::ones({hidden_size}, Tensor::FP16, x.device());

    const int batch_size = timestep.shape[0];

    timestep = timestep.copy(timestep.device());
    timestep = timestep.view({batch_size, 6, hidden_size});

    kernels::mul_add_batch(timestep, {}, false, 0, this->scale_shift_table, false);
    debug("shifted_timestep", timestep);
Hyunsung Lee's avatar
Hyunsung Lee committed
247

muyangli's avatar
muyangli committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    std::array<Tensor, 6> chunked;
    for (int i = 0; i < 6; i++) {
        chunked[i] = timestep.slice(1, i, i + 1);
    }
    auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = chunked;
    // auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(timestep);

    nvtxRangePop();

    {
        nvtxRangePushA("LinearAttention");

        Tensor residual = hidden_states;
        Tensor norm_hidden_states = norm1.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_msa, true, 1, shift_msa, true);
        debug("norm_hidden_states_la", norm_hidden_states);

        Tensor attn_output = pag ? attn.forward_pag(norm_hidden_states, cfg) : attn.forward(norm_hidden_states);
        debug("attn_output_la", attn_output);

        kernels::mul_add_batch(attn_output, gate_msa, true, 0, residual, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("CrossAttention");

        debug("norm_hidden_states_cross", hidden_states);
        Tensor attn_output = cross_attn.forward(hidden_states, encoder_hidden_states, cu_seqlens_img, cu_seqlens_txt);
        debug("attn_output_cross", attn_output);

        kernels::mul_add_batch(attn_output, {}, false, 0, hidden_states, true);

        hidden_states = attn_output;

        nvtxRangePop();
    }

    {
        nvtxRangePushA("Feed-forward");

        debug("hidden_states_ff", hidden_states);
        Tensor norm_hidden_states = norm2.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_mlp, true, 1, shift_mlp, true);
        debug("norm_hidden_states_ff", norm_hidden_states);

        Tensor ff_output = ff.forward(norm_hidden_states, H, W);
        debug("ff_output", ff_output);

        kernels::mul_add_batch(ff_output, gate_mlp, true, 0, hidden_states, true);

        hidden_states = ff_output;

        nvtxRangePop();
    }
Hyunsung Lee's avatar
Hyunsung Lee committed
306

muyangli's avatar
muyangli committed
307
308
309
310
311
312
313
    nvtxRangePop();

    debug("hidden_states_out", hidden_states);

    return hidden_states;
}

Hyunsung Lee's avatar
Hyunsung Lee committed
314
SanaModel::SanaModel(SanaConfig config, Tensor::ScalarType dtype, Device device) :
muyangli's avatar
muyangli committed
315
316
317
318
319
320
321
322
323
    config(config)
{
    const int inner_dim = config.num_attention_heads * config.attention_head_dim;
    for (int i = 0; i < config.num_layers; i++) {
        transformer_blocks.push_back(std::make_unique<SanaLinearTransformerBlock>(
            inner_dim,
            ceilDiv(int(round(config.expand_ratio * inner_dim)), 64) * 64,
            config.num_cross_attention_heads,
            std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
324
            config.use_fp4,
muyangli's avatar
muyangli committed
325
326
327
328
329
330
            dtype, device
        ));
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
}

Hyunsung Lee's avatar
Hyunsung Lee committed
331
332
Tensor SanaModel::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor timestep, Tensor cu_seqlens_img, Tensor cu_seqlens_txt, int H, int W, bool pag, bool cfg, bool skip_first_layer) {
    for (int i = (skip_first_layer ? 1 : 0); i < config.num_layers; i++) {
muyangli's avatar
muyangli committed
333
334
335
336
337
338
339
340
341
        auto &&block = transformer_blocks[i];
        hidden_states = block->forward(
            hidden_states, encoder_hidden_states, timestep, cu_seqlens_img, cu_seqlens_txt, H, W,
            pag && std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
            cfg
        );
    }
    return hidden_states;
}