test_flux_dev.py 5.72 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
6
7
8
9
import os

import pytest
import torch
from diffusers import FluxPipeline
from peft.tuners import lora

from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.caching.diffusers_adapters import apply_cache_on_pipe
Muyang Li's avatar
Muyang Li committed
10
from nunchaku.lora.flux import convert_to_nunchaku_flux_lowrank_dict, is_nunchaku_format, to_diffusers
muyangli's avatar
muyangli committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from .utils import run_pipeline
from ..data import get_dataset
from ..utils import already_generate, compute_lpips

LORA_PATH_MAP = {
    "hypersd8": "ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors",
    "realism": "XLabs-AI/flux-RealismLora/lora.safetensors",
    "ghibsky": "aleksa-codes/flux-ghibsky-illustration/lora.safetensors",
    "anime": "alvdansen/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors",
    "sketch": "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch/FLUX-dev-lora-children-simple-sketch.safetensors",
    "yarn": "linoyts/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors",
    "haunted_linework": "alvdansen/haunted_linework_flux/hauntedlinework_flux_araminta_k.safetensors",
}


def run_test_flux_dev(
    precision: str,
    height: int,
    width: int,
    num_inference_steps: int,
    guidance_scale: float,
    use_qencoder: bool,
    cpu_offload: bool,
    lora_name: str | None,
    lora_scale: float,
    cache_threshold: float,
    max_dataset_size: int,
    expected_lpips: float,
):
    save_root = os.path.join(
        "results",
        "dev",
        f"w{width}h{height}t{num_inference_steps}g{guidance_scale}"
        + (f"-{lora_name}_{lora_scale:.1f}" if lora_name else ""),
    )
    dataset = get_dataset(
        name="MJHQ" if lora_name in [None, "hypersd8"] else lora_name, max_dataset_size=max_dataset_size
    )

    save_dir_16bit = os.path.join(save_root, "bf16")
    if not already_generate(save_dir_16bit, max_dataset_size):
        pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
        pipeline = pipeline.to("cuda")
        if lora_name is not None:
            pipeline.load_lora_weights(
                os.path.dirname(LORA_PATH_MAP[lora_name]),
                weight_name=os.path.basename(LORA_PATH_MAP[lora_name]),
                adapter_name="lora",
            )
            for n, m in pipeline.transformer.named_modules():
                if isinstance(m, lora.LoraLayer):
                    for name in m.scaling.keys():
                        m.scaling[name] = lora_scale

        run_pipeline(
            dataset,
            pipeline,
            save_dir=save_dir_16bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()

    name = precision
    name += "-qencoder" if use_qencoder else ""
    name += "-offload" if cpu_offload else ""
    name += f"-cache{cache_threshold:.2f}" if cache_threshold > 0 else ""

    save_dir_4bit = os.path.join(save_root, name)
    if not already_generate(save_dir_4bit, max_dataset_size):
        pipeline_init_kwargs = {}
        if precision == "int4":
            transformer = NunchakuFluxTransformer2dModel.from_pretrained(
                "mit-han-lab/svdq-int4-flux.1-dev", offload=cpu_offload
            )
        else:
            assert precision == "fp4"
            transformer = NunchakuFluxTransformer2dModel.from_pretrained(
                "mit-han-lab/svdq-fp4-flux.1-dev", precision="fp4", offload=cpu_offload
            )
        if lora_name is not None:
            lora_path = LORA_PATH_MAP[lora_name]
Muyang Li's avatar
Muyang Li committed
99
            transformer.update_lora_params(lora_path)
muyangli's avatar
muyangli committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            transformer.set_lora_strength(lora_scale)

        pipeline_init_kwargs["transformer"] = transformer
        if use_qencoder:
            text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
            pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
        pipeline = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, **pipeline_init_kwargs
        )
        pipeline = pipeline.to("cuda")
        if cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        if cache_threshold > 0:
            apply_cache_on_pipe(pipeline, residual_diff_threshold=cache_threshold)

        run_pipeline(
            dataset,
            pipeline,
            save_dir=save_dir_4bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()
    lpips = compute_lpips(save_dir_16bit, save_dir_4bit)
    print(f"lpips: {lpips}")
    assert lpips < expected_lpips * 1.05


@pytest.mark.parametrize("cpu_offload", [False, True])
def test_flux_dev_base(cpu_offload: bool):
    run_test_flux_dev(
        precision="int4",
        height=1024,
        width=1024,
        num_inference_steps=50,
        guidance_scale=3.5,
        use_qencoder=False,
        cpu_offload=cpu_offload,
        lora_name=None,
        lora_scale=0,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=0.16,
    )


def test_flux_dev_qencoder_800x600():
    run_test_flux_dev(
        precision="int4",
        height=800,
        width=600,
        num_inference_steps=50,
        guidance_scale=3.5,
        use_qencoder=True,
        cpu_offload=False,
        lora_name=None,
        lora_scale=0,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=0.36,
    )