test_flux_dev.py 6.69 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import tempfile

import pytest
import torch
from diffusers import FluxPipeline
from peft.tuners import lora
from safetensors.torch import save_file

from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.caching.diffusers_adapters import apply_cache_on_pipe
from nunchaku.lora.flux import comfyui2diffusers, convert_to_nunchaku_flux_lowrank_dict, detect_format, xlab2diffusers
from .utils import run_pipeline
from ..data import get_dataset
from ..utils import already_generate, compute_lpips

LORA_PATH_MAP = {
    "hypersd8": "ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors",
    "realism": "XLabs-AI/flux-RealismLora/lora.safetensors",
    "ghibsky": "aleksa-codes/flux-ghibsky-illustration/lora.safetensors",
    "anime": "alvdansen/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors",
    "sketch": "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch/FLUX-dev-lora-children-simple-sketch.safetensors",
    "yarn": "linoyts/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors",
    "haunted_linework": "alvdansen/haunted_linework_flux/hauntedlinework_flux_araminta_k.safetensors",
}


def run_test_flux_dev(
    precision: str,
    height: int,
    width: int,
    num_inference_steps: int,
    guidance_scale: float,
    use_qencoder: bool,
    cpu_offload: bool,
    lora_name: str | None,
    lora_scale: float,
    cache_threshold: float,
    max_dataset_size: int,
    expected_lpips: float,
):
    save_root = os.path.join(
        "results",
        "dev",
        f"w{width}h{height}t{num_inference_steps}g{guidance_scale}"
        + (f"-{lora_name}_{lora_scale:.1f}" if lora_name else ""),
    )
    dataset = get_dataset(
        name="MJHQ" if lora_name in [None, "hypersd8"] else lora_name, max_dataset_size=max_dataset_size
    )

    save_dir_16bit = os.path.join(save_root, "bf16")
    if not already_generate(save_dir_16bit, max_dataset_size):
        pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
        pipeline = pipeline.to("cuda")
        if lora_name is not None:
            pipeline.load_lora_weights(
                os.path.dirname(LORA_PATH_MAP[lora_name]),
                weight_name=os.path.basename(LORA_PATH_MAP[lora_name]),
                adapter_name="lora",
            )
            for n, m in pipeline.transformer.named_modules():
                if isinstance(m, lora.LoraLayer):
                    for name in m.scaling.keys():
                        m.scaling[name] = lora_scale

        run_pipeline(
            dataset,
            pipeline,
            save_dir=save_dir_16bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()

    name = precision
    name += "-qencoder" if use_qencoder else ""
    name += "-offload" if cpu_offload else ""
    name += f"-cache{cache_threshold:.2f}" if cache_threshold > 0 else ""

    save_dir_4bit = os.path.join(save_root, name)
    if not already_generate(save_dir_4bit, max_dataset_size):
        pipeline_init_kwargs = {}
        if precision == "int4":
            transformer = NunchakuFluxTransformer2dModel.from_pretrained(
                "mit-han-lab/svdq-int4-flux.1-dev", offload=cpu_offload
            )
        else:
            assert precision == "fp4"
            transformer = NunchakuFluxTransformer2dModel.from_pretrained(
                "mit-han-lab/svdq-fp4-flux.1-dev", precision="fp4", offload=cpu_offload
            )
        if lora_name is not None:
            lora_path = LORA_PATH_MAP[lora_name]
            lora_format = detect_format(lora_path)
            if lora_format != "svdquant":
                if lora_format == "comfyui":
                    input_lora = comfyui2diffusers(lora_path)
                elif lora_format == "xlab":
                    input_lora = xlab2diffusers(lora_path)
                elif lora_format == "diffusers":
                    input_lora = lora_path
                else:
                    raise ValueError(f"Invalid LoRA format {lora_format}.")
                state_dict = convert_to_nunchaku_flux_lowrank_dict(
                    "mit-han-lab/svdq-int4-flux.1-dev/transformer_blocks.safetensors", input_lora
                )
                with tempfile.NamedTemporaryFile(suffix=".safetensors", delete=True) as tmp_file:
                    save_file(state_dict, tmp_file.name)
                    transformer.update_lora_params(tmp_file.name)
            else:
                transformer.update_lora_params(lora_path)
            transformer.set_lora_strength(lora_scale)

        pipeline_init_kwargs["transformer"] = transformer
        if use_qencoder:
            text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
            pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
        pipeline = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, **pipeline_init_kwargs
        )
        pipeline = pipeline.to("cuda")
        if cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        if cache_threshold > 0:
            apply_cache_on_pipe(pipeline, residual_diff_threshold=cache_threshold)

        run_pipeline(
            dataset,
            pipeline,
            save_dir=save_dir_4bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()
    lpips = compute_lpips(save_dir_16bit, save_dir_4bit)
    print(f"lpips: {lpips}")
    assert lpips < expected_lpips * 1.05


@pytest.mark.parametrize("cpu_offload", [False, True])
def test_flux_dev_base(cpu_offload: bool):
    run_test_flux_dev(
        precision="int4",
        height=1024,
        width=1024,
        num_inference_steps=50,
        guidance_scale=3.5,
        use_qencoder=False,
        cpu_offload=cpu_offload,
        lora_name=None,
        lora_scale=0,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=0.16,
    )


def test_flux_dev_qencoder_800x600():
    run_test_flux_dev(
        precision="int4",
        height=800,
        width=600,
        num_inference_steps=50,
        guidance_scale=3.5,
        use_qencoder=True,
        cpu_offload=False,
        lora_name=None,
        lora_scale=0,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=0.36,
    )