SanaModel.cpp 14 KB
Newer Older
Hyunsung Lee's avatar
Hyunsung Lee committed
1
2
#include <iostream>

muyangli's avatar
muyangli committed
3
4
#include "SanaModel.h"
#include "kernels/zgemm/zgemm.h"
5
// #include "flash_api.h"
muyangli's avatar
muyangli committed
6
7
#include "kernels/misc_kernels.h"

limm's avatar
limm committed
8
9
// #include <nvtx3/nvToolsExt.h>
#include <roctx.h>
muyangli's avatar
muyangli committed
10
11
12
13

using spdlog::fmt_lib::format;
using namespace nunchaku;

Muyang Li's avatar
Muyang Li committed
14
15
16
17
18
SanaLinearAttention::SanaLinearAttention(
    int dim, bool bias, bool pag, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : dim(dim), dim_pad(ceilDiv(dim, 128) * 128), qkv_proj(dim, dim_pad * 3, bias, use_fp4, dtype, device),
      out_proj(dim_pad, dim, bias, use_fp4, dtype, device), pag_to_v(std::nullopt) {
    registerChildren(qkv_proj, "qkv_proj")(out_proj, "out_proj");
muyangli's avatar
muyangli committed
19
20

    if (pag) {
21
        pag_to_v.emplace(dim, dim_pad, bias, use_fp4, dtype, device);
muyangli's avatar
muyangli committed
22
23
24
25
26
27
        registerChildren(pag_to_v.value(), "pag_to_v");
    }
}

Tensor SanaLinearAttention::forward(Tensor x, Tensor out) {
    constexpr int HEAD_DIM = 32;
Hyunsung Lee's avatar
Hyunsung Lee committed
28

muyangli's avatar
muyangli committed
29
    assert(x.ndims() == 3);
Muyang Li's avatar
Muyang Li committed
30
31
    const int batch_size     = x.shape[0];
    const int num_tokens     = x.shape[1];
muyangli's avatar
muyangli committed
32
33
34
35
36
37
38
39
40
41
42
43
44
    const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;
    assert(x.shape[2] == dim);

    const int num_heads = dim_pad / HEAD_DIM;

    if (num_tokens_pad != num_tokens) {
        spdlog::debug("SanaLinearAttention: pad num_tokens from {} to {}", num_tokens, num_tokens_pad);

        Tensor x_pad = Tensor::allocate({batch_size, num_tokens_pad, dim}, x.dtype(), x.device());
        x_pad.zero_();
        for (int i = 0; i < batch_size; i++) {
            x_pad.slice(0, i, i + 1).slice(1, 0, num_tokens).copy_(x.slice(0, i, i + 1));
        }
Hyunsung Lee's avatar
Hyunsung Lee committed
45

muyangli's avatar
muyangli committed
46
47
48
49
50
        x = x_pad;
    }

    auto qact = qkv_proj.quantize(x, false);

Muyang Li's avatar
Muyang Li committed
51
    Tensor q  = Tensor::allocate({batch_size, num_tokens_pad, dim_pad}, x.dtype(), x.device());
muyangli's avatar
muyangli committed
52
53
    Tensor vk = Tensor::allocate({batch_size, num_heads, HEAD_DIM + 1, HEAD_DIM}, Tensor::FP32, x.device());

Muyang Li's avatar
Muyang Li committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    kernels::gemm_w4a4(qact.act,
                       qkv_proj.qweight,
                       {},
                       {},
                       qact.ascales,
                       qkv_proj.wscales,
                       {},
                       {},
                       qact.lora_act,
                       qkv_proj.lora_up,
                       {},
                       {},
                       {},
                       {},
                       {},
                       qkv_proj.bias,
                       {},
                       vk,
                       q,
                       qact.is_unsigned,
                       qkv_proj.lora_scales,
                       false,
                       qkv_proj.use_fp4,
                       *qkv_proj.wtscale.data_ptr<float>(),
                       qkv_proj.wcscales.numel() > 0 ? qkv_proj.wcscales : Tensor{},
                       {},
                       {},
                       {},
                       0);
muyangli's avatar
muyangli committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    debug("vk", vk);
    debug("q", q);

    kernels::linearattn_vk_mul_q(q, vk);

    debug("raw_attn_output", q);

    if (num_tokens_pad != num_tokens) {
        Tensor q_unpad = Tensor::allocate({batch_size, num_tokens, dim_pad}, q.dtype(), q.device());
        for (int i = 0; i < batch_size; i++) {
            q_unpad.slice(0, i, i + 1).copy_(q.slice(0, i, i + 1).slice(1, 0, num_tokens));
        }
        q = q_unpad;
    }

    // kernels::gemm_w8a8_fuse_litela(qact.act, qkv.qweight, q, vk, qact.ascales, qkv.wscales);

    // return out_proj.forward(q);
    if (!out.valid()) {
        out = Tensor::allocate({batch_size, num_tokens, dim}, q.dtype(), q.device());
    }
    out_proj.forward(q, out);
    return out;
}

Tensor SanaLinearAttention::forward_pag(Tensor x, bool cfg) {
    const int batch_size = x.shape[0];
    const int num_tokens = x.shape[1];

    Tensor out = Tensor::allocate({batch_size, num_tokens, dim}, x.dtype(), x.device());
    Tensor x_org, x_ptb;
    Tensor out_org, out_ptb;

    if (cfg) {
        assert(batch_size % 3 == 0);
Muyang Li's avatar
Muyang Li committed
119
120
        x_org   = x.slice(0, 0, batch_size * 2 / 3);
        x_ptb   = x.slice(0, batch_size * 2 / 3, batch_size);
muyangli's avatar
muyangli committed
121
122
123
124
        out_org = out.slice(0, 0, batch_size * 2 / 3);
        out_ptb = out.slice(0, batch_size * 2 / 3, batch_size);
    } else {
        assert(batch_size % 2 == 0);
Muyang Li's avatar
Muyang Li committed
125
126
        x_org   = x.slice(0, 0, batch_size / 2);
        x_ptb   = x.slice(0, batch_size / 2, batch_size);
muyangli's avatar
muyangli committed
127
128
129
130
131
        out_org = out.slice(0, 0, batch_size / 2);
        out_ptb = out.slice(0, batch_size / 2, batch_size);
    }

    this->forward(x_org, out_org);
Hyunsung Lee's avatar
Hyunsung Lee committed
132

muyangli's avatar
muyangli committed
133
134
135
136
    Tensor v_ptb = this->pag_to_v.value().forward(x_ptb);
    this->out_proj.forward(v_ptb, out_ptb);

    return out;
Hyunsung Lee's avatar
Hyunsung Lee committed
137
}
muyangli's avatar
muyangli committed
138

Muyang Li's avatar
Muyang Li committed
139
140
141
142
143
144
145
MultiHeadCrossAttention::MultiHeadCrossAttention(
    int num_heads, int head_dim, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : num_heads(num_heads), head_dim(head_dim),
      q_linear(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device),
      kv_linear(num_heads * head_dim, num_heads * head_dim * 2, true, dtype, device),
      out_proj(num_heads * head_dim, num_heads * head_dim, true, use_fp4, dtype, device) {
    registerChildren(q_linear, "q_linear")(kv_linear, "kv_linear")(out_proj, "out_proj");
muyangli's avatar
muyangli committed
146
147
148
149
150
151
152
}

Tensor MultiHeadCrossAttention::forward(Tensor x, Tensor cond, Tensor cu_seqlens_img, Tensor cu_seqlens_txt) {
    assert(x.ndims() == 3);
    assert(cond.ndims() == 2);
    assert(cu_seqlens_img.ndims() == 1);
    assert(cu_seqlens_txt.ndims() == 1);
Hyunsung Lee's avatar
Hyunsung Lee committed
153

muyangli's avatar
muyangli committed
154
155
156
157
158
159
160
    const int batch_size     = x.shape[0];
    const int num_tokens_img = x.shape[1];
    const int num_tokens_txt = cond.shape[0];

    assert(cu_seqlens_img.shape[0] == batch_size + 1);
    assert(cu_seqlens_txt.shape[0] == batch_size + 1);

Muyang Li's avatar
Muyang Li committed
161
    Tensor q  = q_linear.forward(x).view({batch_size * num_tokens_img, num_heads, head_dim});
muyangli's avatar
muyangli committed
162
163
164
165
166
    Tensor kv = kv_linear.forward(cond).view({num_tokens_txt, num_heads * 2, head_dim});

    Tensor k = kv.slice(1, 0, num_heads);
    Tensor v = kv.slice(1, num_heads, num_heads * 2);

fengzch's avatar
fengzch committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    // Tensor attn_output = mha_varlen_fwd(q,
    //                                     k,
    //                                     v,
    //                                     cu_seqlens_img,
    //                                     cu_seqlens_txt,
    //                                     num_tokens_img,
    //                                     num_tokens_txt,
    //                                     0.0f,
    //                                     pow(q.shape[-1], (-0.5)),
    //                                     false,
    //                                     false,
    //                                     -1,
    //                                     -1,
    //                                     false)
    //                          .front()
    //                          .view({batch_size, num_tokens_img, num_heads * head_dim});
183
    Tensor attn_output = Tensor::ones({batch_size * num_tokens, num_heads, dim_head}, Tensor::FP16, Device::cuda());    
fengzch's avatar
fengzch committed
184
    std::cout << "mha_varlen_fwd not support !!!" << std::endl;
Hyunsung Lee's avatar
Hyunsung Lee committed
185
186
187
    // Tensor attn_output = mha_fwd(q, k, v,
    //     0.0f,
    //     pow(q.shape[-1], (-0.5)),
muyangli's avatar
muyangli committed
188
189
190
191
192
193
    //     false, -1, -1, false
    // ).front().view({B, N, num_heads * head_dim});

    return out_proj.forward(attn_output);
}

Muyang Li's avatar
Muyang Li committed
194
195
196
197
198
199
200
SanaGLUMBConv::SanaGLUMBConv(
    int in_features, int hidden_features, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), hidden_features(hidden_features),
      inverted_conv(in_features, hidden_features * 2, true, use_fp4, dtype, device),
      depth_conv(hidden_features * 2, true, dtype, device),
      point_conv(hidden_features, in_features, false, use_fp4, dtype, device) {
    registerChildren(inverted_conv, "inverted_conv")(depth_conv, "depth_conv")(point_conv, "point_conv");
muyangli's avatar
muyangli committed
201
202
203
204
205
206
207
208
209
210
211
}

Tensor SanaGLUMBConv::forward(Tensor x, int H, int W) {
    if (H <= 0 || W <= 0) {
        H = W = sqrt(x.shape[1]);
    }
    x = inverted_conv.forward_silu(x);
    x = x.view({x.shape[0], H, W, x.shape[-1]});
    debug("inverted_conv_output", x);
    x = depth_conv.forward(x);
    debug("depth_conv_output", x);
Muyang Li's avatar
Muyang Li committed
212
    x         = x.view({x.shape[0], H * W, x.shape[-1]});
muyangli's avatar
muyangli committed
213
214
215
216
    auto qact = point_conv.quantize(x, true);
    return point_conv.forward_quant(qact);
}

Muyang Li's avatar
Muyang Li committed
217
218
219
220
221
222
223
224
225
226
227
228
SanaLinearTransformerBlock::SanaLinearTransformerBlock(int hidden_size,
                                                       int intermediate_size,
                                                       int num_cross_attention_heads,
                                                       bool pag,
                                                       bool use_fp4,
                                                       Tensor::ScalarType dtype,
                                                       Device device)
    : hidden_size(hidden_size), num_cross_attention_heads(num_cross_attention_heads),
      attn(hidden_size, false, pag, use_fp4, dtype, device),
      cross_attn(num_cross_attention_heads, hidden_size / num_cross_attention_heads, use_fp4, dtype, device),
      ff(hidden_size, intermediate_size, use_fp4, dtype, device), norm1(hidden_size, 1e-6, false, dtype, device),
      norm2(hidden_size, 1e-6, false, dtype, device) {
muyangli's avatar
muyangli committed
229
230
    this->scale_shift_table = Tensor::allocate({6, hidden_size}, dtype, device);

Muyang Li's avatar
Muyang Li committed
231
    registerChildren(attn, "attn")(cross_attn, "cross_attn")(ff, "ff");
muyangli's avatar
muyangli committed
232

Muyang Li's avatar
Muyang Li committed
233
    registerParams(this->scale_shift_table, "scale_shift_table");
muyangli's avatar
muyangli committed
234
235
}

Muyang Li's avatar
Muyang Li committed
236
237
238
239
240
241
242
243
244
Tensor SanaLinearTransformerBlock::forward(Tensor hidden_states,
                                           Tensor encoder_hidden_states,
                                           Tensor timestep,
                                           Tensor cu_seqlens_img,
                                           Tensor cu_seqlens_txt,
                                           int H,
                                           int W,
                                           bool pag,
                                           bool cfg) {
muyangli's avatar
muyangli committed
245

fengzch-das's avatar
fengzch-das committed
246
    nvtxRangePushA("SanaLinearTransformerBlock");
muyangli's avatar
muyangli committed
247

fengzch-das's avatar
fengzch-das committed
248
    nvtxRangePushA("chunk");
muyangli's avatar
muyangli committed
249
250
251
252
253
254
255
256
257
258

    // Tensor ones = Tensor::ones({hidden_size}, Tensor::FP16, x.device());

    const int batch_size = timestep.shape[0];

    timestep = timestep.copy(timestep.device());
    timestep = timestep.view({batch_size, 6, hidden_size});

    kernels::mul_add_batch(timestep, {}, false, 0, this->scale_shift_table, false);
    debug("shifted_timestep", timestep);
Hyunsung Lee's avatar
Hyunsung Lee committed
259

muyangli's avatar
muyangli committed
260
261
262
263
264
265
266
    std::array<Tensor, 6> chunked;
    for (int i = 0; i < 6; i++) {
        chunked[i] = timestep.slice(1, i, i + 1);
    }
    auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = chunked;
    // auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(timestep);

fengzch-das's avatar
fengzch-das committed
267
    nvtxRangePop();
muyangli's avatar
muyangli committed
268
269

    {
fengzch-das's avatar
fengzch-das committed
270
        nvtxRangePushA("LinearAttention");
muyangli's avatar
muyangli committed
271

Muyang Li's avatar
Muyang Li committed
272
        Tensor residual           = hidden_states;
muyangli's avatar
muyangli committed
273
274
275
276
277
278
279
280
281
282
283
        Tensor norm_hidden_states = norm1.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_msa, true, 1, shift_msa, true);
        debug("norm_hidden_states_la", norm_hidden_states);

        Tensor attn_output = pag ? attn.forward_pag(norm_hidden_states, cfg) : attn.forward(norm_hidden_states);
        debug("attn_output_la", attn_output);

        kernels::mul_add_batch(attn_output, gate_msa, true, 0, residual, true);

        hidden_states = attn_output;

fengzch-das's avatar
fengzch-das committed
284
        nvtxRangePop();
muyangli's avatar
muyangli committed
285
286
287
    }

    {
fengzch-das's avatar
fengzch-das committed
288
        nvtxRangePushA("CrossAttention");
muyangli's avatar
muyangli committed
289
290
291
292
293
294
295
296
297

        debug("norm_hidden_states_cross", hidden_states);
        Tensor attn_output = cross_attn.forward(hidden_states, encoder_hidden_states, cu_seqlens_img, cu_seqlens_txt);
        debug("attn_output_cross", attn_output);

        kernels::mul_add_batch(attn_output, {}, false, 0, hidden_states, true);

        hidden_states = attn_output;

fengzch-das's avatar
fengzch-das committed
298
        nvtxRangePop();
muyangli's avatar
muyangli committed
299
300
301
    }

    {
fengzch-das's avatar
fengzch-das committed
302
        nvtxRangePushA("Feed-forward");
muyangli's avatar
muyangli committed
303
304
305
306
307
308
309
310
311
312
313
314
315

        debug("hidden_states_ff", hidden_states);
        Tensor norm_hidden_states = norm2.forward(hidden_states);
        kernels::mul_add_batch(norm_hidden_states, scale_mlp, true, 1, shift_mlp, true);
        debug("norm_hidden_states_ff", norm_hidden_states);

        Tensor ff_output = ff.forward(norm_hidden_states, H, W);
        debug("ff_output", ff_output);

        kernels::mul_add_batch(ff_output, gate_mlp, true, 0, hidden_states, true);

        hidden_states = ff_output;

fengzch-das's avatar
fengzch-das committed
316
        nvtxRangePop();
muyangli's avatar
muyangli committed
317
    }
Hyunsung Lee's avatar
Hyunsung Lee committed
318

fengzch-das's avatar
fengzch-das committed
319
    nvtxRangePop();
muyangli's avatar
muyangli committed
320
321
322
323
324
325

    debug("hidden_states_out", hidden_states);

    return hidden_states;
}

Muyang Li's avatar
Muyang Li committed
326
SanaModel::SanaModel(SanaConfig config, Tensor::ScalarType dtype, Device device) : config(config) {
muyangli's avatar
muyangli committed
327
328
329
330
331
332
333
    const int inner_dim = config.num_attention_heads * config.attention_head_dim;
    for (int i = 0; i < config.num_layers; i++) {
        transformer_blocks.push_back(std::make_unique<SanaLinearTransformerBlock>(
            inner_dim,
            ceilDiv(int(round(config.expand_ratio * inner_dim)), 64) * 64,
            config.num_cross_attention_heads,
            std::find(config.pag_layers.begin(), config.pag_layers.end(), i) != config.pag_layers.end(),
334
            config.use_fp4,
Muyang Li's avatar
Muyang Li committed
335
336
            dtype,
            device));
muyangli's avatar
muyangli committed
337
338
339
340
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
}

Muyang Li's avatar
Muyang Li committed
341
342
343
344
345
346
347
348
349
350
Tensor SanaModel::forward(Tensor hidden_states,
                          Tensor encoder_hidden_states,
                          Tensor timestep,
                          Tensor cu_seqlens_img,
                          Tensor cu_seqlens_txt,
                          int H,
                          int W,
                          bool pag,
                          bool cfg,
                          bool skip_first_layer) {
Hyunsung Lee's avatar
Hyunsung Lee committed
351
    for (int i = (skip_first_layer ? 1 : 0); i < config.num_layers; i++) {
Muyang Li's avatar
Muyang Li committed
352
353
354
355
356
357
358
359
360
361
362
        auto &&block  = transformer_blocks[i];
        hidden_states = block->forward(hidden_states,
                                       encoder_hidden_states,
                                       timestep,
                                       cu_seqlens_img,
                                       cu_seqlens_txt,
                                       H,
                                       W,
                                       pag && std::find(config.pag_layers.begin(), config.pag_layers.end(), i) !=
                                                  config.pag_layers.end(),
                                       cfg);
muyangli's avatar
muyangli committed
363
364
365
    }
    return hidden_states;
}