test_flux_dev_loras.py 1.29 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
6
7
8
import pytest

from tests.flux.test_flux_dev import run_test_flux_dev


@pytest.mark.parametrize(
    "num_inference_steps,lora_name,lora_scale,cpu_offload,expected_lpips",
    [
Muyang Li's avatar
Muyang Li committed
9
        (25, "realism", 0.9, False, 0.17),
muyangli's avatar
muyangli committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        (25, "ghibsky", 1, False, 0.16),
        (28, "anime", 1, False, 0.27),
        (24, "sketch", 1, False, 0.35),
        (28, "yarn", 1, False, 0.22),
        (25, "haunted_linework", 1, False, 0.34),
    ],
)
def test_flux_dev_loras(num_inference_steps, lora_name, lora_scale, cpu_offload, expected_lpips):
    run_test_flux_dev(
        precision="int4",
        height=1024,
        width=1024,
        num_inference_steps=num_inference_steps,
        guidance_scale=3.5,
        use_qencoder=False,
        cpu_offload=cpu_offload,
        lora_name=lora_name,
        lora_scale=lora_scale,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=expected_lpips,
    )


def test_flux_dev_hypersd8_1080x1920():
    run_test_flux_dev(
        precision="int4",
        height=1080,
        width=1920,
        num_inference_steps=8,
        guidance_scale=3.5,
        use_qencoder=False,
        cpu_offload=False,
        lora_name="hypersd8",
        lora_scale=0.125,
        cache_threshold=0,
        max_dataset_size=8,
        expected_lpips=0.44,
    )