import pytest from tests.flux.test_flux_dev import run_test_flux_dev @pytest.mark.parametrize( "num_inference_steps,lora_name,lora_scale,cpu_offload,expected_lpips", [ (25, "realism", 0.9, False, 0.17), (25, "ghibsky", 1, False, 0.16), (28, "anime", 1, False, 0.27), (24, "sketch", 1, False, 0.35), (28, "yarn", 1, False, 0.22), (25, "haunted_linework", 1, False, 0.34), ], ) def test_flux_dev_loras(num_inference_steps, lora_name, lora_scale, cpu_offload, expected_lpips): run_test_flux_dev( precision="int4", height=1024, width=1024, num_inference_steps=num_inference_steps, guidance_scale=3.5, use_qencoder=False, cpu_offload=cpu_offload, lora_name=lora_name, lora_scale=lora_scale, cache_threshold=0, max_dataset_size=8, expected_lpips=expected_lpips, ) def test_flux_dev_hypersd8_1080x1920(): run_test_flux_dev( precision="int4", height=1080, width=1920, num_inference_steps=8, guidance_scale=3.5, use_qencoder=False, cpu_offload=False, lora_name="hypersd8", lora_scale=0.125, cache_threshold=0, max_dataset_size=8, expected_lpips=0.44, )