FluxModel.cpp 32.2 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
#include "FluxModel.h"
#include "kernels/misc_kernels.h"
#include "kernels/gemm_batched.h"
4
#include "kernels/zgemm/zgemm.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
5
#include "flash_api.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
6
7
8
9
10
11
12
#include "activation.h"

#include <nvtx3/nvToolsExt.h>

#include <iostream>

using spdlog::fmt_lib::format;
muyangli's avatar
muyangli committed
13
using namespace nunchaku;
Zhekai Zhang's avatar
Zhekai Zhang committed
14
15
16
17



Tensor forward_mlp(GEMM_W4A4 &fc1, GEMM_W4A4 &fc2, Tensor norm_hidden_states) {
muyangli's avatar
muyangli committed
18
19
    Tensor ff_output = fc2.forward_quant(
        std::get<GEMM_W4A4::QuantizedActivation>(fc1.forward(norm_hidden_states, GEMM_W4A4::FuseOptions::GELU_QUANT, &fc2))
Zhekai Zhang's avatar
Zhekai Zhang committed
20
21
22
23
24
25
26
27
28
29
30
    );
    return ff_output;
}

// Tensor forward_mlp(GEMM_W8A8 &fc1, GEMM_W8A8 &fc2, Tensor norm_hidden_states) {
//     Tensor ff_output = fc2.forward(fc1.forward(norm_hidden_states), GEMM_W8A8::FuseOptions::GELU);
//     return ff_output;
// }


Tensor forward_fc(GEMM_W4A4 &fc, Tensor x) {
muyangli's avatar
muyangli committed
31
32
    return fc.forward(x);
    // return std::get<Tensor>(fc.forward(x));
Zhekai Zhang's avatar
Zhekai Zhang committed
33
34
35
36
37
38
39
40
41
42
}

// Tensor forward_fc(GEMM_W8A8 &fc, Tensor x) {
//     return fc.forward(x);
// }


AdaLayerNormZeroSingle::AdaLayerNormZeroSingle(int dim, Tensor::ScalarType dtype, Device device) :
    dim(dim),
    linear(dim, 3 * dim, true, dtype, device),
Hyunsung Lee's avatar
Hyunsung Lee committed
43
    norm(dim, 1e-6, false, dtype, device)
Zhekai Zhang's avatar
Zhekai Zhang committed
44
45
46
47
48
49
50
51
52
53
54
{
    registerChildren
        (linear, "linear")
        (norm, "norm")
    ;
}

AdaLayerNormZeroSingle::Output AdaLayerNormZeroSingle::forward(Tensor x, Tensor emb) {
    debug("emb_input", emb);
    emb = linear.forward(Silu::forward(emb));
    debug("emb_linear", emb);
muyangli's avatar
muyangli committed
55
    auto &&[shift_msa, scale_msa, gate_msa] = kernels::split_mod<3>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
56
57
58
59
60
61
    debug("scale_msa", scale_msa);
    debug("shift_msa", shift_msa);

    debug("x", x);
    Tensor norm_x = norm.forward(x);
    debug("norm_x", norm_x);
Hyunsung Lee's avatar
Hyunsung Lee committed
62

muyangli's avatar
muyangli committed
63
    kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
64
65
66
    return Output{norm_x, gate_msa};
}

Hyunsung Lee's avatar
Hyunsung Lee committed
67
AdaLayerNormZero::AdaLayerNormZero(int dim, bool pre_only, Tensor::ScalarType dtype, Device device) :
Zhekai Zhang's avatar
Zhekai Zhang committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    dim(dim), pre_only(pre_only),
    linear(dim, pre_only ? 2 * dim : 6 * dim, true, dtype, device),
    norm(dim, 1e-6, false, dtype, device)
{
    registerChildren
        (linear, "linear")
        (norm, "norm")
    ;
}

AdaLayerNormZero::Output AdaLayerNormZero::forward(Tensor x, Tensor emb) {
    debug("x", x);

    debug("emb_input", emb);
    emb = linear.forward(Silu::forward(emb));
    debug("emb_linear", emb);

    if (pre_only) {
muyangli's avatar
muyangli committed
86
        auto &&[shift_msa, scale_msa] = kernels::split_mod<2>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
87
88
89
90
91
        debug("shift_msa", shift_msa);

        Tensor norm_x = norm.forward(x);
        debug("norm_x", norm_x);

muyangli's avatar
muyangli committed
92
        kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
93
        debug("norm_x_scaled", norm_x);
Hyunsung Lee's avatar
Hyunsung Lee committed
94

Zhekai Zhang's avatar
Zhekai Zhang committed
95
96
        return Output{norm_x};
    } else {
muyangli's avatar
muyangli committed
97
        auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
98
99
100
101
102
        debug("shift_msa", shift_msa);

        Tensor norm_x = norm.forward(x);
        debug("norm_x", norm_x);

muyangli's avatar
muyangli committed
103
        kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
104
105
106
107
108
109
110
        debug("norm_x_scaled", norm_x);

        return Output{norm_x, gate_msa, shift_mlp, scale_mlp, gate_mlp};
    }
}


Hyunsung Lee's avatar
Hyunsung Lee committed
111
Attention::Attention(int num_heads, int dim_head, Device device) :
112
    num_heads(num_heads), dim_head(dim_head), force_fp16(false)
Zhekai Zhang's avatar
Zhekai Zhang committed
113
114
115
116
117
118
119
120
121
{
    headmask_type = Tensor::allocate({num_heads}, Tensor::INT32, Device::cpu());
    for (int i = 0; i < num_heads; i++) {
        headmask_type.data_ptr<int32_t>()[i] = i + 1;
    }
    headmask_type = headmask_type.copy(device);
}

Tensor Attention::forward(Tensor qkv, Tensor pool_qkv, float sparsityRatio) {
122
123
    const bool cast_fp16 = this->force_fp16 && qkv.scalar_type() != Tensor::FP16;

Zhekai Zhang's avatar
Zhekai Zhang committed
124
125
126
127
128
129
130
131
    assert(qkv.ndims() == 3);

    const Device device = qkv.device();
    const int batch_size = qkv.shape[0];
    const int num_tokens = qkv.shape[1];
    assert(qkv.shape[2] == num_heads * dim_head * 3);

    constexpr int POOL_SIZE = 128;
muyangli's avatar
muyangli committed
132
    const int pool_tokens = ceilDiv(num_tokens, POOL_SIZE);
Zhekai Zhang's avatar
Zhekai Zhang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    Tensor blockmask;

    if (pool_qkv.valid()) {
        assert(pool_qkv.shape[0] == batch_size);
        assert(pool_qkv.shape[1] == pool_tokens);
        assert(pool_qkv.shape[2] == num_heads * dim_head * 3);
    }

    Tensor pool_score = Tensor::allocate({batch_size, num_heads, pool_tokens, pool_tokens}, Tensor::FP32, device);

    if (pool_qkv.valid() && sparsityRatio > 0) {
        pool_qkv = pool_qkv.view({batch_size, pool_tokens, 3, num_heads, dim_head});
        pool_qkv = pool_qkv.transpose(1, 2).transpose(2, 3);    // [batch_size, 3, num_heads, poolTokens, dim_head]
        for (int i = 0; i < batch_size; i++) {
            Tensor pool_q = pool_qkv.slice(0, i, i+1).slice(1, 0, 1);
            Tensor pool_k = pool_qkv.slice(0, i, i+1).slice(1, 1, 2);
            Tensor pool_s = pool_score.slice(0, i, i+1);
            gemm_batched_fp16(pool_q, pool_k, pool_s);
        }
    }
Hyunsung Lee's avatar
Hyunsung Lee committed
154

muyangli's avatar
muyangli committed
155
    blockmask = kernels::topk(pool_score, pool_tokens * (1 - sparsityRatio));
Zhekai Zhang's avatar
Zhekai Zhang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    if (cu_seqlens_cpu.valid()) {
        if (cu_seqlens_cpu.shape[0] != batch_size + 1) {
            cu_seqlens_cpu = Tensor{};
        } else {
            for (int i = 0; i <= batch_size; i++) {
                if (cu_seqlens_cpu.data_ptr<int32_t>()[i] != num_tokens * i) {
                    cu_seqlens_cpu = Tensor{};
                    break;
                }
            }
        }
    }
    if (!cu_seqlens_cpu.valid()) {
        cu_seqlens_cpu = Tensor::allocate({batch_size + 1}, Tensor::INT32, Device::cpu());
        cu_seqlens_cpu.data_ptr<int32_t>()[0] = 0;
        for (int i = 1; i <= batch_size; i++) {
            cu_seqlens_cpu.data_ptr<int32_t>()[i] = cu_seqlens_cpu.data_ptr<int32_t>()[i - 1] + num_tokens;
        }
    }

177
178
    if (cast_fp16) {
        Tensor tmp = Tensor::empty(qkv.shape.dataExtent, Tensor::FP16, qkv.device());
muyangli's avatar
muyangli committed
179
        kernels::cast(qkv, tmp);
180
181
182
183
184
        qkv = tmp;
    }

    debug("qkv", qkv);

Zhekai Zhang's avatar
Zhekai Zhang committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    Tensor cu_seqlens = cu_seqlens_cpu.copy(device);

    Tensor reshaped = qkv.view({batch_size * num_tokens, num_heads * 3, dim_head});
    Tensor q = reshaped.slice(1, 0, num_heads);
    Tensor k = reshaped.slice(1, num_heads, num_heads * 2);
    Tensor v = reshaped.slice(1, num_heads * 2, num_heads * 3);

    spdlog::debug("q,k,v={}", q.shape.str());

    Tensor raw_attn_output = mha_fwd_block(
        q, k, v,
        cu_seqlens, cu_seqlens,
        POOL_SIZE, POOL_SIZE,
        headmask_type,
        {},
        blockmask,
        num_tokens,
        num_tokens,
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false, false, false, -1, -1
    ).front();

208
209
210
211
    debug("raw_attn_output", raw_attn_output);

    if (cast_fp16) {
        Tensor tmp = Tensor::empty(raw_attn_output.shape.dataExtent, Tensor::BF16, raw_attn_output.device());
muyangli's avatar
muyangli committed
212
        kernels::cast(raw_attn_output, tmp);
213
214
215
        raw_attn_output = tmp;
    }

Zhekai Zhang's avatar
Zhekai Zhang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    /**
    Tensor raw_attn_output = mha_varlen_fwd(q, k, v,
        cu_seqlens,
        cu_seqlens,
        concat.shape[1],
        concat.shape[1],
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false,
        true,
        -1, -1,
        false
    ).front();

Hyunsung Lee's avatar
Hyunsung Lee committed
230
231
232
    Tensor raw_attn_output = mha_fwd(q, k, v,
        0.0f,
        pow(q.shape[-1], (-0.5)),
Zhekai Zhang's avatar
Zhekai Zhang committed
233
234
235
236
237
238
        false, -1, -1, false
    ).front();

    Tensor raw_attn_output = mha_varlen_fwd(
        q, k, v,
        cu_seqlens, cu_seqlens,
239
        num_tokens_img + num_tokens_txt, num_tokens_img + num_tokens_txt,
Zhekai Zhang's avatar
Zhekai Zhang committed
240
241
242
243
244
245
246
247
248
249
250
251
252
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false, false, -1, -1, false
    ).front();
    **/

    assert(raw_attn_output.shape[0] == batch_size * num_tokens);
    assert(raw_attn_output.shape[1] == num_heads);
    assert(raw_attn_output.shape[2] == dim_head);

    return raw_attn_output;
}

253
254
255
256
257
258
259
260
261
262
void Attention::setForceFP16(Module *module, bool value) {
    spdlog::info("{} force fp16 attention", value ? "Enable" : "Disable");

    module->traverse([&](Module *m) {
        if (Attention *attn = dynamic_cast<Attention *>(m)) {
            attn->force_fp16 = value;
        }
    });
}

263
FluxSingleTransformerBlock::FluxSingleTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, int mlp_ratio, bool use_fp4, Tensor::ScalarType dtype, Device device) :
Hyunsung Lee's avatar
Hyunsung Lee committed
264
    dim(dim),
Zhekai Zhang's avatar
Zhekai Zhang committed
265
266
267
268
    dim_head(attention_head_dim / num_attention_heads),
    num_heads(num_attention_heads),
    mlp_hidden_dim(dim * mlp_ratio),
    norm(dim, dtype, device),
269
270
271
    mlp_fc1(dim, mlp_hidden_dim, true, use_fp4, dtype, device),
    mlp_fc2(mlp_hidden_dim, dim, true, use_fp4, dtype, device),
    qkv_proj(dim, dim * 3, true, use_fp4, dtype, device),
Zhekai Zhang's avatar
Zhekai Zhang committed
272
273
274
    norm_q(dim_head, 1e-6, false, dtype, device),
    norm_k(dim_head, 1e-6, false, dtype, device),
    attn(num_attention_heads, attention_head_dim / num_attention_heads, device),
275
    out_proj(dim, dim, true, use_fp4, dtype, device)
Zhekai Zhang's avatar
Zhekai Zhang committed
276
277
278
279
280
281
282
283
{
    registerChildren
        (norm, "norm")
        (mlp_fc1, "mlp_fc1")
        (mlp_fc2, "mlp_fc2")
        (qkv_proj, "qkv_proj")
        (norm_q, "norm_q")
        (norm_k, "norm_k")
284
        (attn, "attn")
Zhekai Zhang's avatar
Zhekai Zhang committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        (out_proj, "out_proj")
    ;
}

Tensor FluxSingleTransformerBlock::forward(Tensor hidden_states, Tensor temb, Tensor rotary_emb) {

    nvtxRangePushA("FluxSingleTransformerBlock");

    const int batch_size = hidden_states.shape[0];
    const int num_tokens = hidden_states.shape[1];

    auto &&[norm_hidden_states, gate] = this->norm.forward(hidden_states, temb);
    debug("norm_hidden_states", norm_hidden_states);
    debug("gate", gate);

    Tensor residual = hidden_states;

302
    Tensor attn_output;
Zhekai Zhang's avatar
Zhekai Zhang committed
303
304

    debug("rotary_emb", rotary_emb);
305
306
307
308
309
310
311
312
313

    if (attnImpl == AttentionImpl::FlashAttention2) {
        Tensor qkv = Tensor::allocate({batch_size, num_tokens, dim * 3}, norm_hidden_states.scalar_type(), norm_hidden_states.device());
        // qkv_proj.forward(norm_hidden_states, qkv, {});
        // debug("qkv_raw", qkv);

        qkv_proj.forward(norm_hidden_states, qkv, {}, norm_q.weight, norm_k.weight, rotary_emb);
        debug("qkv", qkv);
        // Tensor qkv = forward_fc(qkv_proj, norm_hidden_states);
Hyunsung Lee's avatar
Hyunsung Lee committed
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        attn_output = attn.forward(qkv, {}, 0);
        attn_output = attn_output.reshape({batch_size, num_tokens, num_heads * dim_head});
    } else if (attnImpl == AttentionImpl::NunchakuFP16) {
        assert(batch_size == 1);

        const int num_tokens_pad = ceilDiv(num_tokens, 256) * 256;

        Tensor q = Tensor::allocate({batch_size, num_heads, num_tokens_pad, dim_head}, Tensor::FP16, norm_hidden_states.device());
        Tensor k = Tensor::allocate({batch_size, num_heads, num_tokens_pad, dim_head}, Tensor::FP16, norm_hidden_states.device());
        Tensor v = Tensor::allocate({batch_size, num_heads, num_tokens_pad, dim_head}, Tensor::FP16, norm_hidden_states.device());

        qkv_proj.forward(norm_hidden_states, {}, {}, norm_q.weight, norm_k.weight, rotary_emb, q, k, v, num_tokens);

        debug("packed_q", q);
        debug("packed_k", k);
        debug("packed_v", v);

        Tensor o = Tensor::allocate({batch_size, num_tokens_pad, num_heads * dim_head}, norm_hidden_states.scalar_type(), norm_hidden_states.device());

        kernels::attention_fp16(q, k, v, o, pow(dim_head, (-0.5)));

        attn_output = o.slice(1, 0, num_tokens);
    } else {
        assert(false);
    }

Zhekai Zhang's avatar
Zhekai Zhang committed
341
342
    debug("raw_attn_output", attn_output);

Hyunsung Lee's avatar
Hyunsung Lee committed
343

344

Zhekai Zhang's avatar
Zhekai Zhang committed
345
346
347
348
349
350
    attn_output = forward_fc(out_proj, attn_output);
    debug("attn_output", attn_output);

    Tensor ff_output = forward_mlp(mlp_fc1, mlp_fc2, norm_hidden_states);
    debug("ff_output", ff_output);

muyangli's avatar
muyangli committed
351
    hidden_states = kernels::add(attn_output, ff_output);
Zhekai Zhang's avatar
Zhekai Zhang committed
352
    debug("attn_ff_output", hidden_states);
Hyunsung Lee's avatar
Hyunsung Lee committed
353

muyangli's avatar
muyangli committed
354
    kernels::mul_add(hidden_states, gate, residual);
Zhekai Zhang's avatar
Zhekai Zhang committed
355
356
357
358
359
360

    nvtxRangePop();

    return hidden_states;
}

Hyunsung Lee's avatar
Hyunsung Lee committed
361
JointTransformerBlock::JointTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, bool context_pre_only, bool use_fp4, Tensor::ScalarType dtype, Device device) :
Zhekai Zhang's avatar
Zhekai Zhang committed
362
363
364
365
366
367
    dim(dim),
    dim_head(attention_head_dim / num_attention_heads),
    num_heads(num_attention_heads),
    context_pre_only(context_pre_only),
    norm1(dim, false, dtype, device),
    norm1_context(dim, context_pre_only, dtype, device),
368
369
    qkv_proj(dim, dim * 3, true, use_fp4, dtype, device),
    qkv_proj_context(dim, dim * 3, true, use_fp4, dtype, device),
Zhekai Zhang's avatar
Zhekai Zhang committed
370
371
372
373
374
    norm_q(dim_head, 1e-6, false, dtype, device),
    norm_k(dim_head, 1e-6, false, dtype, device),
    norm_added_q(dim_head, 1e-6, false, dtype, device),
    norm_added_k(dim_head, 1e-6, false, dtype, device),
    attn(num_attention_heads, attention_head_dim / num_attention_heads, device),
375
376
    out_proj(dim, dim, true, use_fp4, dtype, device),
    out_proj_context(dim, dim, true, use_fp4, dtype, device),
Zhekai Zhang's avatar
Zhekai Zhang committed
377
378
    norm2(dim, 1e-6, false, dtype, device),
    norm2_context(dim, 1e-6, false, dtype, device),
379
380
381
382
    mlp_fc1(dim, dim * 4, true, use_fp4, dtype, device),
    mlp_fc2(dim * 4, dim, true, use_fp4, dtype, device),
    mlp_context_fc1(dim, dim * 4, true, use_fp4, dtype, device),
    mlp_context_fc2(dim * 4, dim, true, use_fp4, dtype, device)
Zhekai Zhang's avatar
Zhekai Zhang committed
383
384
385
386
387
388
389
390
391
392
{
    registerChildren
        (norm1, "norm1")
        (norm1_context, "norm1_context")
        (qkv_proj, "qkv_proj")
        (qkv_proj_context, "qkv_proj_context")
        (norm_q, "norm_q")
        (norm_k, "norm_k")
        (norm_added_q, "norm_added_q")
        (norm_added_k, "norm_added_k")
393
        (attn, "attn")
Zhekai Zhang's avatar
Zhekai Zhang committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        (out_proj, "out_proj")
        (out_proj_context, "out_proj_context")
        (norm2, "norm2")
        (norm2_context, "norm2_context")
        (mlp_fc1, "mlp_fc1")
        (mlp_fc2, "mlp_fc2")
        (mlp_context_fc1, "mlp_context_fc1")
        (mlp_context_fc2, "mlp_context_fc2")
    ;
}


// hidden_states: [Batch, Width * Height, dim]
// encoder_hidden_states: [Batch, Token, dim]
std::tuple<Tensor, Tensor> JointTransformerBlock::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb, Tensor rotary_emb_context, float sparsityRatio) {
    int batch_size = hidden_states.shape[0];
    assert(encoder_hidden_states.shape[0] == batch_size);

    nvtxRangePushA("JointTransformerBlock");

    nvtxRangePushA("AdaNorm");


    int num_tokens_img = hidden_states.shape[1];
418
    int num_tokens_txt = encoder_hidden_states.shape[1];
Hyunsung Lee's avatar
Hyunsung Lee committed
419

Zhekai Zhang's avatar
Zhekai Zhang committed
420
421
422
423
    assert(hidden_states.shape[2] == dim);
    assert(encoder_hidden_states.shape[2] == dim);

    spdlog::debug("hidden_states={} encoder_hidden_states={} temb={}", hidden_states.shape.str(), encoder_hidden_states.shape.str(), temb.shape.str());
424
    spdlog::debug("batch_size={} num_tokens_img={} num_tokens_txt={}", batch_size, num_tokens_img, num_tokens_txt);
Zhekai Zhang's avatar
Zhekai Zhang committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

    auto norm1_output = norm1.forward(hidden_states, temb);
    auto norm1_context_output = norm1_context.forward(encoder_hidden_states, temb);

#if 0
    norm1_output.x = hidden_states;
    norm1_context_output.x = encoder_hidden_states;
#endif

    debug("norm_hidden_states", norm1_output.x);
    debug("norm_encoder_hidden_states", norm1_context_output.x);

    constexpr int POOL_SIZE = Attention::POOL_SIZE;

    nvtxRangePop();

    auto stream = getCurrentCUDAStream();
Hyunsung Lee's avatar
Hyunsung Lee committed
442

443
444
    int num_tokens_img_pad = 0, num_tokens_txt_pad = 0;
    Tensor raw_attn_output;
Zhekai Zhang's avatar
Zhekai Zhang committed
445

446
447
448
    if (attnImpl == AttentionImpl::FlashAttention2) {
        num_tokens_img_pad = num_tokens_img;
        num_tokens_txt_pad = num_tokens_txt;
449

450
451
        Tensor concat;
        Tensor pool;
Hyunsung Lee's avatar
Hyunsung Lee committed
452

453
454
        {
            nvtxRangePushA("qkv_proj");
Hyunsung Lee's avatar
Hyunsung Lee committed
455

456
            const bool blockSparse = sparsityRatio > 0;
Hyunsung Lee's avatar
Hyunsung Lee committed
457

458
459
            const int poolTokens = num_tokens_img / POOL_SIZE + num_tokens_txt / POOL_SIZE;
            concat = Tensor::allocate({batch_size, num_tokens_img + num_tokens_txt, dim * 3}, norm1_output.x.scalar_type(), norm1_output.x.device());
Hyunsung Lee's avatar
Hyunsung Lee committed
460

461
462
            pool = blockSparse
                ? Tensor::allocate({batch_size, poolTokens, dim * 3}, norm1_output.x.scalar_type(), norm1_output.x.device())
Zhekai Zhang's avatar
Zhekai Zhang committed
463
                : Tensor{};
Hyunsung Lee's avatar
Hyunsung Lee committed
464

465
466
467
468
            for (int i = 0; i < batch_size; i++) {
                // img first
                Tensor qkv = concat.slice(0, i, i + 1).slice(1, 0, num_tokens_img);
                Tensor qkv_context = concat.slice(0, i, i + 1).slice(1, num_tokens_img, num_tokens_img + num_tokens_txt);
Hyunsung Lee's avatar
Hyunsung Lee committed
469

470
471
472
473
474
475
                Tensor pool_qkv = pool.valid()
                    ? pool.slice(0, i, i + 1).slice(1, 0, num_tokens_img / POOL_SIZE)
                    : Tensor{};
                Tensor pool_qkv_context = pool.valid()
                    ? concat.slice(0, i, i + 1).slice(1, num_tokens_img / POOL_SIZE, num_tokens_img / POOL_SIZE + num_tokens_txt / POOL_SIZE)
                    : Tensor{};
Hyunsung Lee's avatar
Hyunsung Lee committed
476

477
478
                // qkv_proj.forward(norm1_output.x.slice(0, i, i + 1), qkv);
                // debug("qkv_raw", qkv);
Hyunsung Lee's avatar
Hyunsung Lee committed
479

480
                debug("rotary_emb", rotary_emb);
Hyunsung Lee's avatar
Hyunsung Lee committed
481

482
483
                qkv_proj.forward(norm1_output.x.slice(0, i, i + 1), qkv, pool_qkv, norm_q.weight, norm_k.weight, rotary_emb);
                debug("qkv", qkv);
Hyunsung Lee's avatar
Hyunsung Lee committed
484

485
486
                // qkv_proj_context.forward(norm1_context_output.x.slice(0, i, i + 1), qkv_context);
                // debug("qkv_context_raw", qkv_context);
Hyunsung Lee's avatar
Hyunsung Lee committed
487

488
                debug("rotary_emb_context", rotary_emb_context);
Hyunsung Lee's avatar
Hyunsung Lee committed
489

490
491
492
                qkv_proj_context.forward(norm1_context_output.x.slice(0, i, i + 1), qkv_context, pool_qkv_context, norm_added_q.weight, norm_added_k.weight, rotary_emb_context);
                debug("qkv_context", qkv_context);
            }
Hyunsung Lee's avatar
Hyunsung Lee committed
493

494
495
            nvtxRangePop();
        }
Hyunsung Lee's avatar
Hyunsung Lee committed
496

497
498
        spdlog::debug("concat={}", concat.shape.str());
        debug("concat", concat);
Hyunsung Lee's avatar
Hyunsung Lee committed
499

500
        assert(concat.shape[2] == num_heads * dim_head * 3);
Hyunsung Lee's avatar
Hyunsung Lee committed
501

502
        nvtxRangePushA("Attention");
Hyunsung Lee's avatar
Hyunsung Lee committed
503

504
        raw_attn_output = attn.forward(concat, pool, sparsityRatio);
Hyunsung Lee's avatar
Hyunsung Lee committed
505

506
        nvtxRangePop();
Hyunsung Lee's avatar
Hyunsung Lee committed
507

508
        spdlog::debug("raw_attn_output={}", raw_attn_output.shape.str());
Hyunsung Lee's avatar
Hyunsung Lee committed
509

510
        raw_attn_output = raw_attn_output.view({batch_size, num_tokens_img + num_tokens_txt, num_heads, dim_head});
Hyunsung Lee's avatar
Hyunsung Lee committed
511

512
513
514
    } else if (attnImpl == AttentionImpl::NunchakuFP16) {
        num_tokens_img_pad = ceilDiv(num_tokens_img, 256) * 256;
        num_tokens_txt_pad = ceilDiv(num_tokens_txt, 256) * 256;
Zhekai Zhang's avatar
Zhekai Zhang committed
515

516
        Tensor concat_q, concat_k, concat_v;
Zhekai Zhang's avatar
Zhekai Zhang committed
517

518
519
        {
            nvtxRangePushA("qkv_proj");
Hyunsung Lee's avatar
Hyunsung Lee committed
520

521
522
523
            concat_q = Tensor::allocate({batch_size, num_heads, num_tokens_img_pad + num_tokens_txt_pad, dim_head}, Tensor::FP16, norm1_output.x.device());
            concat_k = Tensor::empty_like(concat_q);
            concat_v = Tensor::empty_like(concat_q);
Hyunsung Lee's avatar
Hyunsung Lee committed
524

525
526
527
528
529
530
531
532
            for (int i = 0; i < batch_size; i++) {
                // img first
                auto sliceImg = [&](Tensor x) {
                    return x.slice(0, i, i+1).slice(2, 0, num_tokens_img_pad);
                };
                auto sliceTxt = [&](Tensor x) {
                    return x.slice(0, i, i+1).slice(2, num_tokens_img_pad, num_tokens_img_pad + num_tokens_txt_pad);
                };
Hyunsung Lee's avatar
Hyunsung Lee committed
533

534
535
536
537
                qkv_proj.forward(
                    norm1_output.x.slice(0, i, i + 1), {}, {}, norm_q.weight, norm_k.weight, rotary_emb,
                    sliceImg(concat_q), sliceImg(concat_k), sliceImg(concat_v), num_tokens_img
                );
Hyunsung Lee's avatar
Hyunsung Lee committed
538

539
540
541
542
543
                qkv_proj_context.forward(
                    norm1_context_output.x.slice(0, i, i + 1), {}, {}, norm_added_q.weight, norm_added_k.weight, rotary_emb_context,
                    sliceTxt(concat_q), sliceTxt(concat_k), sliceTxt(concat_v), num_tokens_txt
                );
            }
Zhekai Zhang's avatar
Zhekai Zhang committed
544

545
546
547
            debug("concat_q", concat_q);
            debug("concat_k", concat_k);
            debug("concat_v", concat_v);
Hyunsung Lee's avatar
Hyunsung Lee committed
548

549
            nvtxRangePop();
Zhekai Zhang's avatar
Zhekai Zhang committed
550
551
        }

552
        raw_attn_output = Tensor::allocate({batch_size, num_tokens_img_pad + num_tokens_txt_pad, num_heads * dim_head}, norm1_output.x.scalar_type(), norm1_output.x.device());
Zhekai Zhang's avatar
Zhekai Zhang committed
553

554
        nvtxRangePushA("Attention");
Zhekai Zhang's avatar
Zhekai Zhang committed
555

556
        kernels::attention_fp16(concat_q, concat_k, concat_v, raw_attn_output, pow(dim_head, (-0.5)));
Zhekai Zhang's avatar
Zhekai Zhang committed
557

558
        nvtxRangePop();
Zhekai Zhang's avatar
Zhekai Zhang committed
559

560
561
562
563
        raw_attn_output = raw_attn_output.view({batch_size, num_tokens_img_pad + num_tokens_txt_pad, num_heads, dim_head});
    } else {
        assert(false);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
564
565
566
567
568
569
570
571

    debug("raw_attn_output", raw_attn_output);

    {
        nvtxRangePushA("o_proj");

        auto &&[_, gate_msa, shift_mlp, scale_mlp, gate_mlp] = norm1_output;

572
        // raw_attn_output: [batch_size, num_tokens_img + num_tokens_txt, num_heads * dim_head]
Zhekai Zhang's avatar
Zhekai Zhang committed
573
574
575
576
577
578
579

        Tensor raw_attn_output_split;
        if (batch_size == 1) {
            raw_attn_output_split = raw_attn_output.slice(1, 0, num_tokens_img).reshape({batch_size, num_tokens_img, num_heads * dim_head});
        } else {
            raw_attn_output_split = Tensor::allocate({batch_size, num_tokens_img, num_heads * dim_head}, raw_attn_output.scalar_type(), raw_attn_output.device());
            checkCUDA(cudaMemcpy2DAsync(
muyangli's avatar
muyangli committed
580
                raw_attn_output_split.data_ptr(),
Zhekai Zhang's avatar
Zhekai Zhang committed
581
582
                num_tokens_img * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                raw_attn_output.data_ptr(),
583
                (num_tokens_img_pad + num_tokens_txt_pad) * num_heads * dim_head * raw_attn_output.scalar_size(),
Zhekai Zhang's avatar
Zhekai Zhang committed
584
585
                num_tokens_img * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                batch_size,
muyangli's avatar
muyangli committed
586
                cudaMemcpyDeviceToDevice,
Zhekai Zhang's avatar
Zhekai Zhang committed
587
588
                stream));
        }
muyangli's avatar
muyangli committed
589

Zhekai Zhang's avatar
Zhekai Zhang committed
590
591
592
593
594
595
596
597

        spdlog::debug("raw_attn_output_split={}", raw_attn_output_split.shape.str());
        debug("img.raw_attn_output_split", raw_attn_output_split);

        Tensor attn_output = forward_fc(out_proj, raw_attn_output_split); // std::get<Tensor>(out_proj.forward(raw_attn_output_split));
        debug("img.attn_output", attn_output);

#if 1
muyangli's avatar
muyangli committed
598
        kernels::mul_add(attn_output, gate_msa, hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
599
600
601
602
603
604
605
606
607
608
        hidden_states = std::move(attn_output);

        nvtxRangePop();
        nvtxRangePushA("MLP");

        spdlog::debug("attn_output={}", hidden_states.shape.str());

        Tensor norm_hidden_states = norm2.forward(hidden_states);
        debug("scale_mlp", scale_mlp);
        debug("shift_mlp", shift_mlp);
muyangli's avatar
muyangli committed
609
        kernels::mul_add(norm_hidden_states, scale_mlp, shift_mlp);
Zhekai Zhang's avatar
Zhekai Zhang committed
610
611
612
613
614
615
616
617
618
619
620
621

        spdlog::debug("norm_hidden_states={}", norm_hidden_states.shape.str());
#else
        Tensor norm_hidden_states = hidden_states;
#endif

        // Tensor ff_output = mlp_fc2.forward(GELU::forward(mlp_fc1.forward(norm_hidden_states)));
        debug("img.ff_input", norm_hidden_states);
        Tensor ff_output = forward_mlp(mlp_fc1, mlp_fc2, norm_hidden_states);
        debug("img.ff_output", ff_output);

        debug("gate_mlp", gate_mlp);
muyangli's avatar
muyangli committed
622
        kernels::mul_add(ff_output, gate_mlp, hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        hidden_states = std::move(ff_output);

        nvtxRangePop();

        spdlog::debug("ff_output={}", hidden_states.shape.str());
    }

    if (context_pre_only) {
        return { hidden_states, encoder_hidden_states };
    }

    {
        nvtxRangePushA("o_proj_context");

        auto &&[_, gate_msa, shift_mlp, scale_mlp, gate_mlp] = norm1_context_output;

        Tensor raw_attn_output_split;
        if (batch_size == 1) {
641
            raw_attn_output_split = raw_attn_output.slice(1, num_tokens_img_pad, num_tokens_img_pad + num_tokens_txt).reshape({batch_size, num_tokens_txt, num_heads * dim_head});
Zhekai Zhang's avatar
Zhekai Zhang committed
642
        } else {
643
            raw_attn_output_split = Tensor::allocate({batch_size, num_tokens_txt, num_heads * dim_head}, raw_attn_output.scalar_type(), raw_attn_output.device());
Zhekai Zhang's avatar
Zhekai Zhang committed
644
            checkCUDA(cudaMemcpy2DAsync(
muyangli's avatar
muyangli committed
645
                raw_attn_output_split.data_ptr(),
646
647
648
649
                num_tokens_txt * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                raw_attn_output.data_ptr<char>() + num_tokens_img_pad * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                (num_tokens_img_pad + num_tokens_txt_pad) * num_heads * dim_head * raw_attn_output.scalar_size(),
                num_tokens_txt * num_heads * dim_head * raw_attn_output_split.scalar_size(),
Zhekai Zhang's avatar
Zhekai Zhang committed
650
                batch_size,
muyangli's avatar
muyangli committed
651
                cudaMemcpyDeviceToDevice,
Zhekai Zhang's avatar
Zhekai Zhang committed
652
653
                stream));
        }
muyangli's avatar
muyangli committed
654

Zhekai Zhang's avatar
Zhekai Zhang committed
655
656
657
658
659
660
661
662

        spdlog::debug("raw_attn_output_split={}", raw_attn_output_split.shape.str());
        debug("context.raw_attn_output_split", raw_attn_output_split);

        Tensor attn_output = forward_fc(out_proj_context, raw_attn_output_split); // std::get<Tensor>(out_proj_context.forward(raw_attn_output_split));
        debug("context.attn_output", attn_output);

#if 1
muyangli's avatar
muyangli committed
663
        kernels::mul_add(attn_output, gate_msa, encoder_hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
664
665
666
667
668
669
670
671
672
673
        encoder_hidden_states = std::move(attn_output);

        nvtxRangePop();
        nvtxRangePushA("MLP");

        spdlog::debug("attn_output={}", encoder_hidden_states.shape.str());

        Tensor norm_hidden_states = norm2_context.forward(encoder_hidden_states);
        debug("c_scale_mlp", scale_mlp);
        debug("c_shift_mlp", shift_mlp);
muyangli's avatar
muyangli committed
674
        kernels::mul_add(norm_hidden_states, scale_mlp, shift_mlp);
Zhekai Zhang's avatar
Zhekai Zhang committed
675
676
677
678
679

        spdlog::debug("norm_hidden_states={}", norm_hidden_states.shape.str());
#else
        auto norm_hidden_states = encoder_hidden_states;
#endif
muyangli's avatar
muyangli committed
680

Zhekai Zhang's avatar
Zhekai Zhang committed
681
682
683
684
685
686
687
688

        // Tensor ff_output = mlp_context_fc2.forward(GELU::forward(mlp_context_fc1.forward(norm_hidden_states)));
        // Tensor ff_output = mlp_context_fc2.forward_quant(quant_static_fuse_gelu(mlp_context_fc1.forward(norm_hidden_states), 1.0));
        debug("context.ff_input", norm_hidden_states);
        Tensor ff_output = forward_mlp(mlp_context_fc1, mlp_context_fc2, norm_hidden_states);
        debug("context.ff_output", ff_output);

        debug("c_gate_mlp", gate_mlp);
muyangli's avatar
muyangli committed
689
        kernels::mul_add(ff_output, gate_mlp, encoder_hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
690
691
692
693
694
695
696
697
698
699
700
701
        encoder_hidden_states = std::move(ff_output);

        nvtxRangePop();

        spdlog::debug("ff_output={}", encoder_hidden_states.shape.str());
    }

    nvtxRangePop();

    return { hidden_states, encoder_hidden_states };
}

702
FluxModel::FluxModel(bool use_fp4, bool offload, Tensor::ScalarType dtype, Device device) : dtype(dtype), offload(offload) {
Zhekai Zhang's avatar
Zhekai Zhang committed
703
    for (int i = 0; i < 19; i++) {
704
        transformer_blocks.push_back(std::make_unique<JointTransformerBlock>(3072, 24, 3072, false, use_fp4, dtype, device));
Zhekai Zhang's avatar
Zhekai Zhang committed
705
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
muyangli's avatar
muyangli committed
706
707
708
709
        if (offload && i > 0) { // don't offload first block
            transformer_blocks.back()->setLazyLoad(true);
            transformer_blocks.back()->releaseLazyParams();
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
710
711
    }
    for (int i = 0; i < 38; i++) {
712
        single_transformer_blocks.push_back(std::make_unique<FluxSingleTransformerBlock>(3072, 24, 3072, 4, use_fp4, dtype, Device::cuda()));
Zhekai Zhang's avatar
Zhekai Zhang committed
713
        registerChildren(*single_transformer_blocks.back(), format("single_transformer_blocks.{}", i));
muyangli's avatar
muyangli committed
714
715
716
717
        if (offload) {
            single_transformer_blocks.back()->setLazyLoad(true);
            single_transformer_blocks.back()->releaseLazyParams();
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
718
719
720
    }
}

Hyunsung Lee's avatar
Hyunsung Lee committed
721
722
723
724
725
726
727
728
729
730
Tensor FluxModel::forward(
        Tensor hidden_states,
        Tensor encoder_hidden_states,
        Tensor temb,
        Tensor rotary_emb_img,
        Tensor rotary_emb_context,
        Tensor rotary_emb_single,
        Tensor controlnet_block_samples,
        Tensor controlnet_single_block_samples,
        bool skip_first_layer) {
Zhekai Zhang's avatar
Zhekai Zhang committed
731
732
733
734
735
736
737
    const int batch_size = hidden_states.shape[0];
    const Tensor::ScalarType dtype = hidden_states.dtype();
    const Device device = hidden_states.device();

    const int txt_tokens = encoder_hidden_states.shape[1];
    const int img_tokens = hidden_states.shape[1];

muyangli's avatar
muyangli committed
738
    const int numLayers = transformer_blocks.size() + single_transformer_blocks.size();
Hyunsung Lee's avatar
Hyunsung Lee committed
739
740
    const int num_controlnet_block_samples = controlnet_block_samples.shape[0];
    const int num_controlnet_single_block_samples = controlnet_single_block_samples.shape[0];
Zhekai Zhang's avatar
Zhekai Zhang committed
741

muyangli's avatar
muyangli committed
742
    Tensor concat;
Zhekai Zhang's avatar
Zhekai Zhang committed
743

muyangli's avatar
muyangli committed
744
    auto compute = [&](int layer) {
745
        if (skip_first_layer && size_t(layer) == 0) return;
muyangli's avatar
muyangli committed
746
747
748
        if (size_t(layer) < transformer_blocks.size()) {
            auto &block = transformer_blocks.at(layer);
            std::tie(hidden_states, encoder_hidden_states) = block->forward(hidden_states, encoder_hidden_states, temb, rotary_emb_img, rotary_emb_context, 0.0f);
Hyunsung Lee's avatar
Hyunsung Lee committed
749
750
751
752
753
754
755
756
            if (controlnet_block_samples.valid()) {
                int interval_control = ceilDiv(transformer_blocks.size(), static_cast<size_t>(num_controlnet_block_samples));
                int block_index = layer / interval_control;
                // Xlabs ControlNet
                // block_index = layer % num_controlnet_block_samples;

                hidden_states = kernels::add(hidden_states, controlnet_block_samples[block_index]);
            }
muyangli's avatar
muyangli committed
757
758
759
760
761
762
763
764
765
766
        } else {
            if (size_t(layer) == transformer_blocks.size()) {
                // txt first, same as diffusers
                concat = Tensor::allocate({batch_size, txt_tokens + img_tokens, 3072}, dtype, device);
                for (int i = 0; i < batch_size; i++) {
                    concat.slice(0, i, i + 1).slice(1, 0, txt_tokens).copy_(encoder_hidden_states);
                    concat.slice(0, i, i + 1).slice(1, txt_tokens, txt_tokens + img_tokens).copy_(hidden_states);
                }
                hidden_states = concat;
                encoder_hidden_states = {};
Hyunsung Lee's avatar
Hyunsung Lee committed
767

muyangli's avatar
muyangli committed
768
769
770
771
            }

            auto &block = single_transformer_blocks.at(layer - transformer_blocks.size());
            hidden_states = block->forward(hidden_states, temb, rotary_emb_single);
Hyunsung Lee's avatar
Hyunsung Lee committed
772
773
774
775
776
777
778
779
780
781
            if (controlnet_single_block_samples.valid()) {
                int interval_control = ceilDiv(single_transformer_blocks.size(), static_cast<size_t>(num_controlnet_single_block_samples));
                int block_index = (layer - transformer_blocks.size()) / interval_control;
                // Xlabs ControlNet
                // block_index = layer % num_controlnet_single_block_samples

                auto slice = hidden_states.slice(1, txt_tokens, txt_tokens + img_tokens);
                slice = kernels::add(slice, controlnet_single_block_samples[block_index]);
                hidden_states.slice(1, txt_tokens, txt_tokens + img_tokens).copy_(slice);
            }
muyangli's avatar
muyangli committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        }
    };
    auto load = [&](int layer) {
        if (size_t(layer) < transformer_blocks.size()) {
            auto &block = transformer_blocks.at(layer);
            block->loadLazyParams();
        } else {
            auto &block = single_transformer_blocks.at(layer - transformer_blocks.size());
            block->loadLazyParams();
        }
    };
    auto unload = [&](int layer) {
        if (size_t(layer) < transformer_blocks.size()) {
            auto &block = transformer_blocks.at(layer);
            block->releaseLazyParams();
        } else {
            auto &block = single_transformer_blocks.at(layer - transformer_blocks.size());
            block->releaseLazyParams();
        }
    };

    LayerOffloadHelper helper(this->offload, numLayers, compute, load, unload);
    helper.run();
Zhekai Zhang's avatar
Zhekai Zhang committed
805
806

    return hidden_states;
807
808
}

Hyunsung Lee's avatar
Hyunsung Lee committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
std::tuple<Tensor, Tensor> FluxModel::forward_layer(
        size_t layer,
        Tensor hidden_states,
        Tensor encoder_hidden_states,
        Tensor temb,
        Tensor rotary_emb_img,
        Tensor rotary_emb_context,
        Tensor controlnet_block_samples,
        Tensor controlnet_single_block_samples) {

    std::tie(hidden_states, encoder_hidden_states) = transformer_blocks.at(layer)->forward(
        hidden_states,
        encoder_hidden_states,
        temb,
        rotary_emb_img,
        rotary_emb_context, 0.0f);

    const int txt_tokens = encoder_hidden_states.shape[1];
    const int img_tokens = hidden_states.shape[1];

    const int num_controlnet_block_samples = controlnet_block_samples.shape[0];
    const int num_controlnet_single_block_samples = controlnet_single_block_samples.shape[0];

    if (layer < transformer_blocks.size() && controlnet_block_samples.valid()) {
        int interval_control = ceilDiv(transformer_blocks.size(), static_cast<size_t>(num_controlnet_block_samples));
        int block_index = layer / interval_control;
        // Xlabs ControlNet
        // block_index = layer % num_controlnet_block_samples;

        hidden_states = kernels::add(hidden_states, controlnet_block_samples[block_index]);
    } else if (layer >= transformer_blocks.size() && controlnet_single_block_samples.valid()) {
        int interval_control = ceilDiv(single_transformer_blocks.size(), static_cast<size_t>(num_controlnet_single_block_samples));
        int block_index = (layer - transformer_blocks.size()) / interval_control;
        // Xlabs ControlNet
        // block_index = layer % num_controlnet_single_block_samples

        auto slice = hidden_states.slice(1, txt_tokens, txt_tokens + img_tokens);
        slice = kernels::add(slice, controlnet_single_block_samples[block_index]);
        hidden_states.slice(1, txt_tokens, txt_tokens + img_tokens).copy_(slice);
    }

    return { hidden_states, encoder_hidden_states };
}

853
854
855
856
857
858
859
860
void FluxModel::setAttentionImpl(AttentionImpl impl) {
    for (auto &&block : this->transformer_blocks) {
        block->attnImpl = impl;
    }
    for (auto &&block : this->single_transformer_blocks) {
        block->attnImpl = impl;
    }
}