FluxModel.cpp 23.2 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
#include "FluxModel.h"
#include "kernels/misc_kernels.h"
#include "kernels/gemm_batched.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
4
#include "flash_api.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
5
6
7
8
9
10
11
#include "activation.h"

#include <nvtx3/nvToolsExt.h>

#include <iostream>

using spdlog::fmt_lib::format;
muyangli's avatar
muyangli committed
12
using namespace nunchaku;
Zhekai Zhang's avatar
Zhekai Zhang committed
13
14
15
16



Tensor forward_mlp(GEMM_W4A4 &fc1, GEMM_W4A4 &fc2, Tensor norm_hidden_states) {
muyangli's avatar
muyangli committed
17
18
    Tensor ff_output = fc2.forward_quant(
        std::get<GEMM_W4A4::QuantizedActivation>(fc1.forward(norm_hidden_states, GEMM_W4A4::FuseOptions::GELU_QUANT, &fc2))
Zhekai Zhang's avatar
Zhekai Zhang committed
19
20
21
22
23
24
25
26
27
28
29
    );
    return ff_output;
}

// Tensor forward_mlp(GEMM_W8A8 &fc1, GEMM_W8A8 &fc2, Tensor norm_hidden_states) {
//     Tensor ff_output = fc2.forward(fc1.forward(norm_hidden_states), GEMM_W8A8::FuseOptions::GELU);
//     return ff_output;
// }


Tensor forward_fc(GEMM_W4A4 &fc, Tensor x) {
muyangli's avatar
muyangli committed
30
31
    return fc.forward(x);
    // return std::get<Tensor>(fc.forward(x));
Zhekai Zhang's avatar
Zhekai Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
}

// Tensor forward_fc(GEMM_W8A8 &fc, Tensor x) {
//     return fc.forward(x);
// }


AdaLayerNormZeroSingle::AdaLayerNormZeroSingle(int dim, Tensor::ScalarType dtype, Device device) :
    dim(dim),
    linear(dim, 3 * dim, true, dtype, device),
    norm(dim, 1e-6, false, dtype, device) 
{
    registerChildren
        (linear, "linear")
        (norm, "norm")
    ;
}

AdaLayerNormZeroSingle::Output AdaLayerNormZeroSingle::forward(Tensor x, Tensor emb) {
    debug("emb_input", emb);
    emb = linear.forward(Silu::forward(emb));
    debug("emb_linear", emb);
muyangli's avatar
muyangli committed
54
    auto &&[shift_msa, scale_msa, gate_msa] = kernels::split_mod<3>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
55
56
57
58
59
60
61
    debug("scale_msa", scale_msa);
    debug("shift_msa", shift_msa);

    debug("x", x);
    Tensor norm_x = norm.forward(x);
    debug("norm_x", norm_x);
    
muyangli's avatar
muyangli committed
62
    kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    return Output{norm_x, gate_msa};
}

AdaLayerNormZero::AdaLayerNormZero(int dim, bool pre_only, Tensor::ScalarType dtype, Device device) : 
    dim(dim), pre_only(pre_only),
    linear(dim, pre_only ? 2 * dim : 6 * dim, true, dtype, device),
    norm(dim, 1e-6, false, dtype, device)
{
    registerChildren
        (linear, "linear")
        (norm, "norm")
    ;
}

AdaLayerNormZero::Output AdaLayerNormZero::forward(Tensor x, Tensor emb) {
    debug("x", x);

    debug("emb_input", emb);
    emb = linear.forward(Silu::forward(emb));
    debug("emb_linear", emb);

    if (pre_only) {
muyangli's avatar
muyangli committed
85
        auto &&[shift_msa, scale_msa] = kernels::split_mod<2>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
86
87
88
89
90
        debug("shift_msa", shift_msa);

        Tensor norm_x = norm.forward(x);
        debug("norm_x", norm_x);

muyangli's avatar
muyangli committed
91
        kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
92
93
94
95
        debug("norm_x_scaled", norm_x);
        
        return Output{norm_x};
    } else {
muyangli's avatar
muyangli committed
96
        auto &&[shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp] = kernels::split_mod<6>(emb);
Zhekai Zhang's avatar
Zhekai Zhang committed
97
98
99
100
101
        debug("shift_msa", shift_msa);

        Tensor norm_x = norm.forward(x);
        debug("norm_x", norm_x);

muyangli's avatar
muyangli committed
102
        kernels::mul_add(norm_x, scale_msa, shift_msa);
Zhekai Zhang's avatar
Zhekai Zhang committed
103
104
105
106
107
108
109
110
        debug("norm_x_scaled", norm_x);

        return Output{norm_x, gate_msa, shift_mlp, scale_mlp, gate_mlp};
    }
}


Attention::Attention(int num_heads, int dim_head, Device device) : 
111
    num_heads(num_heads), dim_head(dim_head), force_fp16(false)
Zhekai Zhang's avatar
Zhekai Zhang committed
112
113
114
115
116
117
118
119
120
{
    headmask_type = Tensor::allocate({num_heads}, Tensor::INT32, Device::cpu());
    for (int i = 0; i < num_heads; i++) {
        headmask_type.data_ptr<int32_t>()[i] = i + 1;
    }
    headmask_type = headmask_type.copy(device);
}

Tensor Attention::forward(Tensor qkv, Tensor pool_qkv, float sparsityRatio) {
121
122
    const bool cast_fp16 = this->force_fp16 && qkv.scalar_type() != Tensor::FP16;

Zhekai Zhang's avatar
Zhekai Zhang committed
123
124
125
126
127
128
129
130
    assert(qkv.ndims() == 3);

    const Device device = qkv.device();
    const int batch_size = qkv.shape[0];
    const int num_tokens = qkv.shape[1];
    assert(qkv.shape[2] == num_heads * dim_head * 3);

    constexpr int POOL_SIZE = 128;
muyangli's avatar
muyangli committed
131
    const int pool_tokens = ceilDiv(num_tokens, POOL_SIZE);
Zhekai Zhang's avatar
Zhekai Zhang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    Tensor blockmask;

    if (pool_qkv.valid()) {
        assert(pool_qkv.shape[0] == batch_size);
        assert(pool_qkv.shape[1] == pool_tokens);
        assert(pool_qkv.shape[2] == num_heads * dim_head * 3);
    }

    Tensor pool_score = Tensor::allocate({batch_size, num_heads, pool_tokens, pool_tokens}, Tensor::FP32, device);

    if (pool_qkv.valid() && sparsityRatio > 0) {
        pool_qkv = pool_qkv.view({batch_size, pool_tokens, 3, num_heads, dim_head});
        pool_qkv = pool_qkv.transpose(1, 2).transpose(2, 3);    // [batch_size, 3, num_heads, poolTokens, dim_head]
        for (int i = 0; i < batch_size; i++) {
            Tensor pool_q = pool_qkv.slice(0, i, i+1).slice(1, 0, 1);
            Tensor pool_k = pool_qkv.slice(0, i, i+1).slice(1, 1, 2);
            Tensor pool_s = pool_score.slice(0, i, i+1);
            gemm_batched_fp16(pool_q, pool_k, pool_s);
        }
    }
    
muyangli's avatar
muyangli committed
154
    blockmask = kernels::topk(pool_score, pool_tokens * (1 - sparsityRatio));
Zhekai Zhang's avatar
Zhekai Zhang committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    if (cu_seqlens_cpu.valid()) {
        if (cu_seqlens_cpu.shape[0] != batch_size + 1) {
            cu_seqlens_cpu = Tensor{};
        } else {
            for (int i = 0; i <= batch_size; i++) {
                if (cu_seqlens_cpu.data_ptr<int32_t>()[i] != num_tokens * i) {
                    cu_seqlens_cpu = Tensor{};
                    break;
                }
            }
        }
    }
    if (!cu_seqlens_cpu.valid()) {
        cu_seqlens_cpu = Tensor::allocate({batch_size + 1}, Tensor::INT32, Device::cpu());
        cu_seqlens_cpu.data_ptr<int32_t>()[0] = 0;
        for (int i = 1; i <= batch_size; i++) {
            cu_seqlens_cpu.data_ptr<int32_t>()[i] = cu_seqlens_cpu.data_ptr<int32_t>()[i - 1] + num_tokens;
        }
    }

176
177
    if (cast_fp16) {
        Tensor tmp = Tensor::empty(qkv.shape.dataExtent, Tensor::FP16, qkv.device());
muyangli's avatar
muyangli committed
178
        kernels::cast(qkv, tmp);
179
180
181
182
183
        qkv = tmp;
    }

    debug("qkv", qkv);

Zhekai Zhang's avatar
Zhekai Zhang committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    Tensor cu_seqlens = cu_seqlens_cpu.copy(device);

    Tensor reshaped = qkv.view({batch_size * num_tokens, num_heads * 3, dim_head});
    Tensor q = reshaped.slice(1, 0, num_heads);
    Tensor k = reshaped.slice(1, num_heads, num_heads * 2);
    Tensor v = reshaped.slice(1, num_heads * 2, num_heads * 3);

    spdlog::debug("q,k,v={}", q.shape.str());

    Tensor raw_attn_output = mha_fwd_block(
        q, k, v,
        cu_seqlens, cu_seqlens,
        POOL_SIZE, POOL_SIZE,
        headmask_type,
        {},
        blockmask,
        num_tokens,
        num_tokens,
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false, false, false, -1, -1
    ).front();

207
208
209
210
    debug("raw_attn_output", raw_attn_output);

    if (cast_fp16) {
        Tensor tmp = Tensor::empty(raw_attn_output.shape.dataExtent, Tensor::BF16, raw_attn_output.device());
muyangli's avatar
muyangli committed
211
        kernels::cast(raw_attn_output, tmp);
212
213
214
        raw_attn_output = tmp;
    }

Zhekai Zhang's avatar
Zhekai Zhang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    /**
    Tensor raw_attn_output = mha_varlen_fwd(q, k, v,
        cu_seqlens,
        cu_seqlens,
        concat.shape[1],
        concat.shape[1],
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false,
        true,
        -1, -1,
        false
    ).front();

    Tensor raw_attn_output = mha_fwd(q, k, v, 
        0.0f, 
        pow(q.shape[-1], (-0.5)), 
        false, -1, -1, false
    ).front();

    Tensor raw_attn_output = mha_varlen_fwd(
        q, k, v,
        cu_seqlens, cu_seqlens,
        num_tokens_img + num_tokens_context, num_tokens_img + num_tokens_context,
        0.0f,
        pow(q.shape[-1], (-0.5)),
        false, false, -1, -1, false
    ).front();
    **/

    assert(raw_attn_output.shape[0] == batch_size * num_tokens);
    assert(raw_attn_output.shape[1] == num_heads);
    assert(raw_attn_output.shape[2] == dim_head);

    return raw_attn_output;
}

252
253
254
255
256
257
258
259
260
261
void Attention::setForceFP16(Module *module, bool value) {
    spdlog::info("{} force fp16 attention", value ? "Enable" : "Disable");

    module->traverse([&](Module *m) {
        if (Attention *attn = dynamic_cast<Attention *>(m)) {
            attn->force_fp16 = value;
        }
    });
}

Zhekai Zhang's avatar
Zhekai Zhang committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
FluxSingleTransformerBlock::FluxSingleTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, int mlp_ratio, Tensor::ScalarType dtype, Device device) :
    dim(dim), 
    dim_head(attention_head_dim / num_attention_heads),
    num_heads(num_attention_heads),
    mlp_hidden_dim(dim * mlp_ratio),
    norm(dim, dtype, device),
    mlp_fc1(dim, mlp_hidden_dim, true, dtype, device),
    mlp_fc2(mlp_hidden_dim, dim, true, dtype, device),
    qkv_proj(dim, dim * 3, true, dtype, device),
    norm_q(dim_head, 1e-6, false, dtype, device),
    norm_k(dim_head, 1e-6, false, dtype, device),
    attn(num_attention_heads, attention_head_dim / num_attention_heads, device),
    out_proj(dim, dim, true, dtype, device)
{
    registerChildren
        (norm, "norm")
        (mlp_fc1, "mlp_fc1")
        (mlp_fc2, "mlp_fc2")
        (qkv_proj, "qkv_proj")
        (norm_q, "norm_q")
        (norm_k, "norm_k")
283
        (attn, "attn")
Zhekai Zhang's avatar
Zhekai Zhang committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        (out_proj, "out_proj")
    ;
}

Tensor FluxSingleTransformerBlock::forward(Tensor hidden_states, Tensor temb, Tensor rotary_emb) {

    nvtxRangePushA("FluxSingleTransformerBlock");

    const int batch_size = hidden_states.shape[0];
    const int num_tokens = hidden_states.shape[1];

    auto &&[norm_hidden_states, gate] = this->norm.forward(hidden_states, temb);
    debug("norm_hidden_states", norm_hidden_states);
    debug("gate", gate);

    Tensor residual = hidden_states;

    Tensor qkv = Tensor::allocate({batch_size, num_tokens, dim * 3}, norm_hidden_states.scalar_type(), norm_hidden_states.device());
    // qkv_proj.forward(norm_hidden_states, qkv, {});
    // debug("qkv_raw", qkv);

    debug("rotary_emb", rotary_emb);
    qkv_proj.forward(norm_hidden_states, qkv, {}, norm_q.weight, norm_k.weight, rotary_emb);
    debug("qkv", qkv);
    // Tensor qkv = forward_fc(qkv_proj, norm_hidden_states);
    
    Tensor attn_output = attn.forward(qkv, {}, 0);
    attn_output = attn_output.reshape({batch_size, num_tokens, num_heads * dim_head});
    debug("raw_attn_output", attn_output);

    attn_output = forward_fc(out_proj, attn_output);
    debug("attn_output", attn_output);

    Tensor ff_output = forward_mlp(mlp_fc1, mlp_fc2, norm_hidden_states);
    debug("ff_output", ff_output);

muyangli's avatar
muyangli committed
320
    hidden_states = kernels::add(attn_output, ff_output);
Zhekai Zhang's avatar
Zhekai Zhang committed
321
322
    debug("attn_ff_output", hidden_states);
    
muyangli's avatar
muyangli committed
323
    kernels::mul_add(hidden_states, gate, residual);
Zhekai Zhang's avatar
Zhekai Zhang committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

    nvtxRangePop();

    return hidden_states;
}

JointTransformerBlock::JointTransformerBlock(int dim, int num_attention_heads, int attention_head_dim, bool context_pre_only, Tensor::ScalarType dtype, Device device) : 
    dim(dim),
    dim_head(attention_head_dim / num_attention_heads),
    num_heads(num_attention_heads),
    context_pre_only(context_pre_only),
    norm1(dim, false, dtype, device),
    norm1_context(dim, context_pre_only, dtype, device),
    qkv_proj(dim, dim * 3, true, dtype, device),
    qkv_proj_context(dim, dim * 3, true, dtype, device),
    norm_q(dim_head, 1e-6, false, dtype, device),
    norm_k(dim_head, 1e-6, false, dtype, device),
    norm_added_q(dim_head, 1e-6, false, dtype, device),
    norm_added_k(dim_head, 1e-6, false, dtype, device),
    attn(num_attention_heads, attention_head_dim / num_attention_heads, device),
    out_proj(dim, dim, true, dtype, device),
    out_proj_context(dim, dim, true, dtype, device),
    norm2(dim, 1e-6, false, dtype, device),
    norm2_context(dim, 1e-6, false, dtype, device),
    mlp_fc1(dim, dim * 4, true, dtype, device),
    mlp_fc2(dim * 4, dim, true, dtype, device),
    mlp_context_fc1(dim, dim * 4, true, dtype, device),
    mlp_context_fc2(dim * 4, dim, true, dtype, device)
{
    registerChildren
        (norm1, "norm1")
        (norm1_context, "norm1_context")
        (qkv_proj, "qkv_proj")
        (qkv_proj_context, "qkv_proj_context")
        (norm_q, "norm_q")
        (norm_k, "norm_k")
        (norm_added_q, "norm_added_q")
        (norm_added_k, "norm_added_k")
362
        (attn, "attn")
Zhekai Zhang's avatar
Zhekai Zhang committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        (out_proj, "out_proj")
        (out_proj_context, "out_proj_context")
        (norm2, "norm2")
        (norm2_context, "norm2_context")
        (mlp_fc1, "mlp_fc1")
        (mlp_fc2, "mlp_fc2")
        (mlp_context_fc1, "mlp_context_fc1")
        (mlp_context_fc2, "mlp_context_fc2")
    ;
}


// hidden_states: [Batch, Width * Height, dim]
// encoder_hidden_states: [Batch, Token, dim]
std::tuple<Tensor, Tensor> JointTransformerBlock::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb, Tensor rotary_emb_context, float sparsityRatio) {
    int batch_size = hidden_states.shape[0];
    assert(encoder_hidden_states.shape[0] == batch_size);

    nvtxRangePushA("JointTransformerBlock");

    nvtxRangePushA("AdaNorm");


    int num_tokens_img = hidden_states.shape[1];
    int num_tokens_context = encoder_hidden_states.shape[1];
    
    assert(hidden_states.shape[2] == dim);
    assert(encoder_hidden_states.shape[2] == dim);

    spdlog::debug("hidden_states={} encoder_hidden_states={} temb={}", hidden_states.shape.str(), encoder_hidden_states.shape.str(), temb.shape.str());
    spdlog::debug("batch_size={} num_tokens_img={} num_tokens_context={}", batch_size, num_tokens_img, num_tokens_context);

    auto norm1_output = norm1.forward(hidden_states, temb);
    auto norm1_context_output = norm1_context.forward(encoder_hidden_states, temb);

#if 0
    norm1_output.x = hidden_states;
    norm1_context_output.x = encoder_hidden_states;
#endif

    debug("norm_hidden_states", norm1_output.x);
    debug("norm_encoder_hidden_states", norm1_context_output.x);

    constexpr int POOL_SIZE = Attention::POOL_SIZE;

    nvtxRangePop();

    auto stream = getCurrentCUDAStream();
    Tensor concat;
    Tensor pool;
    
    {
        nvtxRangePushA("qkv_proj");

        const bool blockSparse = sparsityRatio > 0;

        const int poolTokens = num_tokens_img / POOL_SIZE + num_tokens_context / POOL_SIZE;
        concat = Tensor::allocate({batch_size, num_tokens_img + num_tokens_context, dim * 3}, norm1_output.x.scalar_type(), norm1_output.x.device());

        pool = blockSparse
            ? Tensor::allocate({batch_size, poolTokens, dim * 3}, norm1_output.x.scalar_type(), norm1_output.x.device())
            : Tensor{};
        
        for (int i = 0; i < batch_size; i++) {
            // img first
            Tensor qkv = concat.slice(0, i, i + 1).slice(1, 0, num_tokens_img);
            Tensor qkv_context = concat.slice(0, i, i + 1).slice(1, num_tokens_img, num_tokens_img + num_tokens_context);

            Tensor pool_qkv = pool.valid() 
                ? pool.slice(0, i, i + 1).slice(1, 0, num_tokens_img / POOL_SIZE) 
                : Tensor{};
            Tensor pool_qkv_context = pool.valid() 
                ? concat.slice(0, i, i + 1).slice(1, num_tokens_img / POOL_SIZE, num_tokens_img / POOL_SIZE + num_tokens_context / POOL_SIZE)
                : Tensor{};

            // qkv_proj.forward(norm1_output.x.slice(0, i, i + 1), qkv);
            // debug("qkv_raw", qkv);

            debug("rotary_emb", rotary_emb);

            qkv_proj.forward(norm1_output.x.slice(0, i, i + 1), qkv, pool_qkv, norm_q.weight, norm_k.weight, rotary_emb);
            debug("qkv", qkv);

            // qkv_proj_context.forward(norm1_context_output.x.slice(0, i, i + 1), qkv_context);
            // debug("qkv_context_raw", qkv_context);

            debug("rotary_emb_context", rotary_emb_context);

            qkv_proj_context.forward(norm1_context_output.x.slice(0, i, i + 1), qkv_context, pool_qkv_context, norm_added_q.weight, norm_added_k.weight, rotary_emb_context);
            debug("qkv_context", qkv_context);
        }

        nvtxRangePop();
    }

    spdlog::debug("concat={}", concat.shape.str());
    debug("concat", concat);

    assert(concat.shape[2] == num_heads * dim_head * 3);

    nvtxRangePushA("Attention");

    Tensor raw_attn_output = attn.forward(concat, pool, sparsityRatio);

    nvtxRangePop();

    spdlog::debug("raw_attn_output={}", raw_attn_output.shape.str());

    raw_attn_output = raw_attn_output.view({batch_size, num_tokens_img + num_tokens_context, num_heads, dim_head});
    debug("raw_attn_output", raw_attn_output);


    {
        nvtxRangePushA("o_proj");

        auto &&[_, gate_msa, shift_mlp, scale_mlp, gate_mlp] = norm1_output;

        // raw_attn_output: [batch_size, num_tokens_img + num_tokens_context, num_heads * dim_head]

        Tensor raw_attn_output_split;
        if (batch_size == 1) {
            raw_attn_output_split = raw_attn_output.slice(1, 0, num_tokens_img).reshape({batch_size, num_tokens_img, num_heads * dim_head});
        } else {
            raw_attn_output_split = Tensor::allocate({batch_size, num_tokens_img, num_heads * dim_head}, raw_attn_output.scalar_type(), raw_attn_output.device());
            checkCUDA(cudaMemcpy2DAsync(
                raw_attn_output_split.data_ptr(), 
                num_tokens_img * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                raw_attn_output.data_ptr(),
                (num_tokens_img + num_tokens_context) * num_heads * dim_head * raw_attn_output.scalar_size(),
                num_tokens_img * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                batch_size,
                cudaMemcpyDeviceToDevice, 
                stream));
        }
        

        spdlog::debug("raw_attn_output_split={}", raw_attn_output_split.shape.str());
        debug("img.raw_attn_output_split", raw_attn_output_split);

        Tensor attn_output = forward_fc(out_proj, raw_attn_output_split); // std::get<Tensor>(out_proj.forward(raw_attn_output_split));
        debug("img.attn_output", attn_output);

#if 1
muyangli's avatar
muyangli committed
506
        kernels::mul_add(attn_output, gate_msa, hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
507
508
509
510
511
512
513
514
515
516
        hidden_states = std::move(attn_output);

        nvtxRangePop();
        nvtxRangePushA("MLP");

        spdlog::debug("attn_output={}", hidden_states.shape.str());

        Tensor norm_hidden_states = norm2.forward(hidden_states);
        debug("scale_mlp", scale_mlp);
        debug("shift_mlp", shift_mlp);
muyangli's avatar
muyangli committed
517
        kernels::mul_add(norm_hidden_states, scale_mlp, shift_mlp);
Zhekai Zhang's avatar
Zhekai Zhang committed
518
519
520
521
522
523
524
525
526
527
528
529

        spdlog::debug("norm_hidden_states={}", norm_hidden_states.shape.str());
#else
        Tensor norm_hidden_states = hidden_states;
#endif

        // Tensor ff_output = mlp_fc2.forward(GELU::forward(mlp_fc1.forward(norm_hidden_states)));
        debug("img.ff_input", norm_hidden_states);
        Tensor ff_output = forward_mlp(mlp_fc1, mlp_fc2, norm_hidden_states);
        debug("img.ff_output", ff_output);

        debug("gate_mlp", gate_mlp);
muyangli's avatar
muyangli committed
530
        kernels::mul_add(ff_output, gate_mlp, hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        hidden_states = std::move(ff_output);

        nvtxRangePop();

        spdlog::debug("ff_output={}", hidden_states.shape.str());
    }

    if (context_pre_only) {
        return { hidden_states, encoder_hidden_states };
    }

    {
        nvtxRangePushA("o_proj_context");

        auto &&[_, gate_msa, shift_mlp, scale_mlp, gate_mlp] = norm1_context_output;

        Tensor raw_attn_output_split;
        if (batch_size == 1) {
            raw_attn_output_split = raw_attn_output.slice(1, num_tokens_img, num_tokens_img + num_tokens_context).reshape({batch_size, num_tokens_context, num_heads * dim_head});
        } else {
            raw_attn_output_split = Tensor::allocate({batch_size, num_tokens_context, num_heads * dim_head}, raw_attn_output.scalar_type(), raw_attn_output.device());
            checkCUDA(cudaMemcpy2DAsync(
                raw_attn_output_split.data_ptr(), 
                num_tokens_context * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                raw_attn_output.data_ptr<char>() + num_tokens_img * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                (num_tokens_img + num_tokens_context) * num_heads * dim_head * raw_attn_output.scalar_size(),
                num_tokens_context * num_heads * dim_head * raw_attn_output_split.scalar_size(),
                batch_size,
                cudaMemcpyDeviceToDevice, 
                stream));
        }
        

        spdlog::debug("raw_attn_output_split={}", raw_attn_output_split.shape.str());
        debug("context.raw_attn_output_split", raw_attn_output_split);

        Tensor attn_output = forward_fc(out_proj_context, raw_attn_output_split); // std::get<Tensor>(out_proj_context.forward(raw_attn_output_split));
        debug("context.attn_output", attn_output);

#if 1
muyangli's avatar
muyangli committed
571
        kernels::mul_add(attn_output, gate_msa, encoder_hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
572
573
574
575
576
577
578
579
580
581
        encoder_hidden_states = std::move(attn_output);

        nvtxRangePop();
        nvtxRangePushA("MLP");

        spdlog::debug("attn_output={}", encoder_hidden_states.shape.str());

        Tensor norm_hidden_states = norm2_context.forward(encoder_hidden_states);
        debug("c_scale_mlp", scale_mlp);
        debug("c_shift_mlp", shift_mlp);
muyangli's avatar
muyangli committed
582
        kernels::mul_add(norm_hidden_states, scale_mlp, shift_mlp);
Zhekai Zhang's avatar
Zhekai Zhang committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596

        spdlog::debug("norm_hidden_states={}", norm_hidden_states.shape.str());
#else
        auto norm_hidden_states = encoder_hidden_states;
#endif
        

        // Tensor ff_output = mlp_context_fc2.forward(GELU::forward(mlp_context_fc1.forward(norm_hidden_states)));
        // Tensor ff_output = mlp_context_fc2.forward_quant(quant_static_fuse_gelu(mlp_context_fc1.forward(norm_hidden_states), 1.0));
        debug("context.ff_input", norm_hidden_states);
        Tensor ff_output = forward_mlp(mlp_context_fc1, mlp_context_fc2, norm_hidden_states);
        debug("context.ff_output", ff_output);

        debug("c_gate_mlp", gate_mlp);
muyangli's avatar
muyangli committed
597
        kernels::mul_add(ff_output, gate_mlp, encoder_hidden_states);
Zhekai Zhang's avatar
Zhekai Zhang committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        encoder_hidden_states = std::move(ff_output);

        nvtxRangePop();

        spdlog::debug("ff_output={}", encoder_hidden_states.shape.str());
    }

    nvtxRangePop();

    return { hidden_states, encoder_hidden_states };
}

FluxModel::FluxModel(Tensor::ScalarType dtype, Device device) {
    for (int i = 0; i < 19; i++) {
        transformer_blocks.push_back(std::make_unique<JointTransformerBlock>(3072, 24, 3072, false, dtype, device));
        registerChildren(*transformer_blocks.back(), format("transformer_blocks.{}", i));
    }
    for (int i = 0; i < 38; i++) {
        single_transformer_blocks.push_back(std::make_unique<FluxSingleTransformerBlock>(3072, 24, 3072, 4, dtype, Device::cuda()));
        registerChildren(*single_transformer_blocks.back(), format("single_transformer_blocks.{}", i));
    }
}

Tensor FluxModel::forward(Tensor hidden_states, Tensor encoder_hidden_states, Tensor temb, Tensor rotary_emb_img, Tensor rotary_emb_context, Tensor rotary_emb_single) {
    const int batch_size = hidden_states.shape[0];
    const Tensor::ScalarType dtype = hidden_states.dtype();
    const Device device = hidden_states.device();

    const int txt_tokens = encoder_hidden_states.shape[1];
    const int img_tokens = hidden_states.shape[1];

    for (auto &&block : transformer_blocks) {
        std::tie(hidden_states, encoder_hidden_states) = block->forward(hidden_states, encoder_hidden_states, temb, rotary_emb_img, rotary_emb_context, 0.0f);
    }

    // txt first, same as diffusers
    Tensor concat = Tensor::allocate({batch_size, txt_tokens + img_tokens, 3072}, dtype, device);
    for (int i = 0; i < batch_size; i++) {
        concat.slice(0, i, i + 1).slice(1, 0, txt_tokens).copy_(encoder_hidden_states);
        concat.slice(0, i, i + 1).slice(1, txt_tokens, txt_tokens + img_tokens).copy_(hidden_states);
    }
    hidden_states = concat;
    encoder_hidden_states = {};

    for (auto &&block : single_transformer_blocks) {
        hidden_states = block->forward(hidden_states, temb, rotary_emb_single);
    }

    return hidden_states;
}